HomeMy WebLinkAbout2017 Westview Dr Technical - Building
TECHNICAL
~~\
~/
~ C). ~~ '.
t/_ ~ .
;;? .
'\ }.. f;:jc0{!., , & '\:)c
\'>..\~ \' K'-1\
\ '" \JJ Q./-?
j-O\\
..
"
.
Reep Engineering & Consulting, Inc.
Date: 03/30/07
By: I. E. Reep, P.E.
LATERAL ENGINEERING FOR HILlNE HOMES
PLAN 2112 [30-PSF SNOW, 110-MPH, EXP C, & SOC 02]
Page 1 of 5
1. PROJECT INFORMATION
Tami Djernes
9999 West View Drive
Port An eles Wash in ton 98363
See permit application.
HiLine Homes
PROJECT INFORMATION AND CRITERIA
OWNER/ADDRESS
TAX PARCEL NUMBER/SITE ADDRESS:
PLAN NUMBER:
2. STRUCTURAL DESIGNER INFORMATION
Reep Engineering & Consulting, Inc.
I.E. (Gene) Reep, P. E.
8205 Sunset Lane, Pasco WA 99301
Phone (509) 547-9087/Cell 366-2869
E:Mail: reepengineering@charter net
Washington License No. 14364
Idaho License No. 8908
ICC No. 465600
Note: The above stamp applies to the structural
members and assemblies described in the following
calculations only and is valid with a copied or wet
stam intended for reuse b HiLine Homes Inc.
3. SCOPE OF DESIGN
TYPE OF DESIGN:
EXTENT OF DESIGN:
fILE
REFERENCE CODES & STANDARDS
Lateral engineering analysis of wind and
seismic forces on building.
Structural specifications for residence and
two-car garage.
2003 International Building Code (IBC).
2003 International Residential Code (IRC).
2001 National Design Specification (NOS).
American Society of Civil Engineers
(ASCE) Standard 7-02.
American Society for Testing Material
(ASTM) Standard A307.
American Plywood Association (APA)
Diaphragms And Shear Walls Design/
Construction Guide, November 2004.
~
-,
Reep Engineering & Consulting, Inc.
.
Date: 03/30/07
Bv: I. E. Reep. P.E.
LATERAL ENGINEERING FOR HILlNE HOMES
PLAN 2112 [30-PSF SNOW, 110-MPH, EXP C, & SOC 02]
Page 2 of 5
4. DESIGN CRITERIA
FLAT ROOF SNOW LOAD LIVE LOAD:
ROOF DEAD LOAD:
EXTERIOR WALL DEAD LOAD:
INTERIOR WALL DEAD LOAD:
SEISMIC DESIGN CATEGORY:
BASIC WIND SPEED:
WIND EXPOSURE FACTOR:
ALLOWABLE SOIL PRESSURE:
MATERIAL SPECIFICATIONS:
1 500- sf
Framing Material: No.2 Hem-Fir minimum.
Wood Structural Panels: APA Rated.
10d Nails Diameter: 0.148-in
8d Nails Diameter: 0.131-in
Concrete Strength @ 28-days: 2;500-psi
Anchor Bolts: ASTM A307 Steel
CONTENTS
Project Information And Criteria Page 1
Description Page 3
Specifications And Design Criteria Page 3
Engineering Calculations Page 3
TABLES IN ATTACHMENT
~~~ Page A-1
Table A. elanl'2~."t~ Structural Specifications & Allowable Loads
Table B. Wind Design Criteria Page A-2
Table C. Seismic Design Criteria Page A-3
Table D. Wind Loads Page A-4
Table E. Minimum Wind Loads Page A-5
Table F. Seismic Loads Page A-6
Table G. Controlling Shear Loads Page A-8
Table H. Wind Shear Wall Loads Page A-9
Table I. Seismic Shear Wall Loads Page A-1 0
Table J. Roof Diaphragm Load Calculations Page A-11
Reep Engineering & Consulting, Inc.
Date: 03/30/07
Bv: I. E. Reep, P.E.
LATERAL ENGINEERING FOR HILlNE HOMES
PLAN 2112 [30-PSF SNOW, 110-MPH, EXP C, & SOC 02]
Page 3 of 5
DESCRIPTION
This rep'ort provides engineering calculations and structural design specifications for HiLine
~il.t!&4l,~;,4r~
Homes P.J~iqi2~i'~~ planned for construction in Port Angeles, Washington. The one-story
house is 2~i1~12~sf in area plus a two-car garage. Design specifications are provided in Table
A and wind and seismic design criteria, including calculations, are included in Tables Band
C, respectively. Lateral engineering calculations are provided in Tables D through J.
Calculations are performed using Microsoft Excel linked worksheets.
SPECIFICATIONS AND DESIGN CRITERIA
Design criteria are based on the 2003 International Building Code (IBC), 2001 National
Design Specification, and the American Society of Civil Engineers (ASCE) Standard 7-02.
Table A. Specifications of Structural Components And Fasteners
Specifications are provided for size and spacing of anchor bolts, shear wall hold-downs,
shear wall sheathing and nailing, shear transfer, and roof framing. Structural
specifications are identified with respect to Wall Lines, which are shown on plan sheet S2.
Table B. Wind Design Criteria
Wind design criteria are based on a H;j])fiijp'l:lIJ:)a$'imViad~SR[~d!!fimiExp~ff'eI5actorr01
The simplified method per IBC Section 1609.6 is used for determining wind loads.
Overturning moments due to wind forces are less than allowable restorative dead load
moments as shown in Table F. Uplift loads for roof tributaries are calculated assuming
the maximum uplift of 24.1-psf in the roof overhang Zone E applies to the tributary area.
Table C. Seismic Design Criteria
Seismic design loads are based on default Site Classification D per IBC Section 1615.1.1
~r-r\"'"'wr'" ~,5
for a maximum flat roof snow load rJ;f)",dft3iOri:psf. The Equivalent Lateral Force Procedure
of the American Society of Civil Engineers (ASCE) Standard 7-02 Section 9.5.5 is used
for calculating seismic forces.
ENGINEERING CALCULATIONS
Engineering calculations are documented in Tables D through J based on specifications in
Tables Band C. These tables provide the following information.
Table D. Wind Loads
Wind loads and overturning moments are calculated in Table D for two orthogonal
directions, transverse and longitudinal. Calculated values are linked to Table G,
Controlling Shear Loads to determine if wind, minimum wind, or seismic loads control
design of lateral restraint. Unit uplift on the building is also calculated for both the
transverse and longitudinal directions. Overturning loads due to design base winds are
calculated with a link to Table F, Seismic Loads where they are compared to seismic and
building restoring loads.
l
Reep Engineering & Consulting, Inc.
Date: 03/30/07
By: I. E. Reep, P.E.
LATERAL ENGINEERING FOR HILlNE HOMES
PLAN 2112 [30-PSF SNOW, 110-MPH, EXP C, & SOC 02]
Page 4 of 5
Table E. Minimum Wind
Minimum wind loads are provided in Table E based on horizontal pressures equal to 10
psf and vertical pressures equal to zero per IBC Section 1609.2.1.1. Calculations are
based on the simplified wind load method of IBC Section 1609.6. Calculations are
performed for both transverse and longitudinal directions and linked to Table G for
comparison to wind and seismic loads.
Tables F. Seismic Loads
Table F provides seismic shear loads for a maximum ftatr(fa'm1SIjll!,"~roa1:t13'd~$f. Flat roof
snow loads are calculated in Table J to determine the added effect of flat roof snow loads
greater than 30-psf per IBC Section 1716.5.1. Calculations are based on seismic design
criteria in Table C and the Lateral Force Procedure method of ASCE Standard 7-02,
Section 9.5.5. This procedure is limited to buildings of light frame construction not
exceeding three stories in height for SDC 0 and higher. Seismic loads are calculated for
transverse and longitudinal directions. Overturning moments are calculated in the table
and compared to allowable restoring dead load moments. Although not required for one-
story buildings, story drift and P-Delta effects are analyzed in this table per ASCE 7-02,
Section 9.5.5.7 to verify building stability due to earthquake forces. Both story drift and
building stability are well below allowable limits. Overturning loads due to design base
seismic forces are calculated and compared to restoring loads. The building is stable with
respect to overturning.
Table G. Controlling Shear Loads
Table G provides a summary of seismic shear loads. Shear load values from Tables 0,
E, and F are compared to determine controlling lateral forces. The controlling values are
linked to Tables H and I for calculating maximum shear wall loads for wind and seismic
forces, respectively.
Table H. Wind Shear Loads
Table H provides transverse and longitudinal loads on the building structure including wall
length, applied unit shear, shear wall length, resistive unit shear, unit drag load, unit dead
load on shear walls, and hold-down loads for the various shear wall lengths based on
controlling wind shear loads from Table I. Allowable dead loads are based on an
allowance of 0.66 of the calculated dead load per IBC Section 1609.3 for load
combinations using the allowable stress design method of analysis of wind loads.
Table I. Seismic Shear Loads
Table I provides transverse and longitudinal loads on the building structure including wall
length, applied unit shear, shear wall length, resistive unit shear, unit drag load, unit dead
load on shear walls, and hold-down loads for the various shear wall lengths based on
seismic shear loads from Table G. Allowable dead loads are based on an allowance of
0.60 of the calculated dead load per ASCE Standard 7-02, Section 2.4.1 for load
combinations using the allowable stress design method of analysis of seismic loads.
Reep Engineering & Consulting, Inc.
Date: 03/30/07
Bv: I. E. Reep. P.E.
LATERAL ENGINEERING FOR HILlNE HOMES
PLAN 2112 [30-PSF SNOW, 110-MPH, EXP e, & soe 02]
Page 5 of 5
Table J. Roof Diaphragm & Snow Load Calculations
Table J provides roof diaphragm load calculations for determining diaphragm shear per
IBC 1620.4.3 for seismic loads and comparing these loads with wind and minimum wind
loads from Table H. In addition, shear wall and diaphragm deflection are calculated to
confirm that the diaphragm is flexible, that is the roof diaphragm to shear wall ratio is
greater than 2.0 per ASCE 7-02, Section 9.5.2.3.1. Strength level seismic unit shear
values are used to calculate deflections. Calculations are based on American Plywood
Association (APA) Report T2002-17, Estimating Wood Structural Panel Diaphragm and
Shear Wall Deflection, April 17, 2002. Uplift due to design base wind loads are calculated
assuming the roof experiences a maximum uplift pressure from Table B for "Roof Wind
Zone F Pressure". Allowable roof dead loads plus truss connections exceed uplift by an
acceptable margin.
Maximum Considered Earthquake Ground Motion
Site Class D Fa = 1.00 Fv = 1.50
Zip Code = 98363
Central Lat. = 48.009706 deg Central Long. = -123.77836 deg
1.6
tl! 1.4
c
.Q
..... 1.2
E
"* 1
CJ
CJ
<C 0.8
~
13 0.6
al
a.
VJ 0.4
UJ
o
:!; 0.2
o
o
0.5
1
1.5
2
Period, sec
~lqn-~))~ -DJ'<ZY'I1~
l
Period, see MCE Sa, g
0.00 0.582
0.12 1.456
0.20 1.456
0.62 1.456
0.70 1.236
0.80 1.125
0.90 1.000
1.00 0.900
1.10 0.813
1.20 0.750
1.30 0.692
1.40 0.643
1.50 MOO
1.60 0.563
1.70 0.529
1.80 o.sOO
1.90 0.474
MO 0.450
Reep Engineering Consulting, Inc. Page A-1
Table A. Plan 2112 Structural Specifications & Allowable Loads (6 sheets).
This table provides summary structural specifications. Additional details for standard
specifications and calculation of allowable loads are provided in at the end of this table.
Explanation of Wall Lines
Shear walls and structural specifications are identified with Wall Lines. Lettered Wall Lines are
generally identified from front to rear of the building and numbered Wall Lines start at the left
and continue to the right (standard plan). For reversed plans, Wall Lines remain the same
except numbered Wall Lines start at plan right.
STRUCTURAL SPECIFICATIONS
~igpf'6!G6gila'6 ~R'ic;ifi~tiQni'fi('UI;~llJx ' .
Maximum a lied shear er Tables H or I lb.
Maximum anchor bolt Load 72-in o.c. minimum 2 anchors er mudsill lb.
Allowable anchor bolt load for 1/2-in dia. A307 bolts with 7-in. embedment (Ib).
InstaIl1/2-in dia. ASTM A307 anchor bolts @ 72-in o.c. per standard specification.
~.6~~twf~;~.!.I~tfQlfJigqyvp01~p~~~mG.ltigQ~"
Wall Line C (Standard Garage Door Location)
Maximum overturnin tension load er Tables H or I lb. 1,956
Install Simpson STHD8 Strap Tie Holdowns per standard specification (total of 4 STHD10s).
Allowable tension load for Simpson STHD8 Strap Ties is 2,370-lb. 2,370
Wall Line D (Optional Garage Door Location)
Maximum overturnin tension load er Tables H or I lb.
Fasten aSB to mudsill with 8d nails @ 4-in o.c.
Allowable overturning load = (1/2)(36/4)(117) = 527-lb.
Wall Line 1 (Optional Garage Door Location)
Maximum overturnin tension load er Tables H or I lb. 1,698
Install Simpson STHD8 Strap Tie Holdowns per standard specification (total of 4 STHD8s).
Hold-downs not required on Wall Line 1 unless garage door is installed on this Wall Line.
Allowable tension load for Simpson STHD8 Strap Ties is 2,370-lb. 2,370
Wall Line 2
Maximum overturnin tension load er Tables H or I lb.
As shown on the plan (Sheet S2) fasten L TT20B Tension Tie to framing per standard
specification. Fasten L TT20B to concrete foundation with 1/2-in Simpson Titen or Wedge-All
anchor (controls) per standard specification (two L TT20Bs per shear wall segment (total of 4
L TT20Bs and anchors required).
Allowable tension load for Simpson Wedge-All anchor = 1 ,088-lb (controls).
2,801
467
912
-141
527
760
All Exterior Wall Lines
Maximum resistive unit shear load er Tables H or I Ibltt. 175
Apply 7/16-in. aSB wood structural panels to Hem-Fir framing members with 8d nails @ 6-in
o.c. per standard specification.
Allowable shear per standard specification = (0.50)(0.93)(785) = 365-lbltt. 365
Revised 01/24/07 Lateral Specs Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 1
--- ------ --~
Reep Engineering Consulting, Inc. Page A-1
Table A. Plan 2112 Structural Specifications & Allowable Loads (6 sheets).
Wall Line 2 (GWB Shear Wall)
Maximum resistive unit shear for seismic loads er Table I Ib/tt. 103
Fasten Simpson WB106 Wall Bracing to framing members per standard specification. Fasten
1/2-in. GWB drywall panels to both sides of Hem-Fir framing members per standard
s ecification.
Allowable shear for seismic loads per standard specification = 172-lblft.
ShearTransferll~pecifications
All Wall Lines
Fasten double top plates together with 10d nails @ 12-in o.c. and 6-in o.c. at splices. Overlap
splices 4-tt. minimum. Fasten OSB wall sheathing between shear wall segments at same
fastener spacing as on shear walls.
Fasten OSB panels to mudsills with minimum 8d nails @ 6-in o.c.
Wall Lines 1, 2, & 4 (Gables)
Maximum a lied unit shear er Tables H or I lb. 98
Fasten gable-end trusses to double top plates with 2-10d toenails @ 16-in o.c.
Allowable load for (0.83)(2)(12/16)(1.6)(84) = 203-lblft. 203
Wall Lines B, D, 3, & 4 (Eaves)
Maximum a lied unit shear er Tables H or I lb. 175
See Roof Framin S ecification for truss connections.
Fasten per Roof Framing Specification for truss connections. 381
Wall Line 2 (GWB Shear Wall-to Roof Diaphragm)
Maximum applied unit shear per Tables H or I (Ib/tt). 88
Fasten truss bottom chord to to late with 2-1 Od common nails 16-in o.c.
Allowable load for2-10d toenails @ 16-in o.c. = (2)(0.83)(12/16)(1.6)(102) = 203-lblft.
w_;I;~liirllj!~i~1+t{/ll1BRQf;i[)l~pb.rag I)1I~E.r~mii1g.f~p.~.cifi~a.tiQij$...%
Roof Sheathing
Maximum applied unit shear per Table J (Iblft). 113
Install 7/16-in unblocked wood structural panels per IBC Case 1. Fasten with 8-d nails @ 6-in
o.c. on supported edges and 12-in o.c. in the field. See Truss Blocking & Boundary Nailing
below for additional requirements.
Basic allowable unit shear for wind loads = 645-lblft per NOS Table 4.2B for 7/16-in
unblocked panel diaphragms. Adjustment Factor (AF) for ASO = 0.5. Adjusted 323
allowable unit shear = (0.50)(645) = 323-lb/tt.
Truss Blocking & Boundary Nailing
Fasten 2X4 vent blocking in each truss bay with 1-10d toenail into truss, each side. Fasten
roof diaphragm to blocking with 8d nails @ 6-in o.c.
Revised 01/24/07 Lateral Specs Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 2
Reep Engineering Consulting, Inc. Page A-1
Table A. Plan 2112 Structural Specifications & Allowable Loads (6 sheets).
Truss Connections
Maximum applied unit shear per Tables G = Q/LRoof (Ib/ft).
Fasten truss tails to top plates with 2-10 toenails and a Simpson H2.5A or H1 Seismic &
Hurricane Tie fastened to truss and top plates per manufactures instructions. (see sheet S3,
Roof Framing Plan).
Allowable load for 2-10d common toenails = (2)(0.83)(1.6)(102) = 271-lb per truss
end. Allowable load for H2.5A or H1 Seismic & HurricaneTies = 11 O-Ib per truss end
for Hem-Fir. Total allowable load per truss end = 271 + 110 = 381-lb per truss end =
381-lb/ft (H2.5A ties control lateral loads).
Maximum net uplift on truss connection per Table J (Ib).
Allowable uplift for H2.5A/H1 Seismic & Hurricane Ties = 535.lb/400-lb for Hem-Fir
framing (H 1 ties control uplift loads).
Truss Chord Splice Nailing
Maximum a lied chord tension load er Tables J, C = T = M/b = v L /b8 lb. 1,197
Fasten exterior wall top plate splices together with 10d nails @ 6-in o.c. Minimum splice length
= 48-in.
Allowable chord splice tension load for 10d nails @ 6-in o.c.
131
381
245
400
1 ,469
Standard Structural Specifications & Allowable Loads
QunfClali ~bcbi?ri.~.~Qlt.
Basic allowable single shear for fastening Hem-Fir framing to concrete with 1/2-in
bolts = 570-lb per NOS Table 11 E. Adjustment for 1 O-minute wind/seismic loads =
1.6 NOS Table 2.3.2. Allowable load = 1.6 570 = 912-lb.
Basic allowable single shear for fastening Hem-Fir framing to concrete with 1/2-
inX8.5-in long Simpson Wedge-All wedge anchors in minimum 2,500-psi concrete
with 4.5-in embedment = 1,763-lb. Adjustments for no special inspection = 0.50, for
3-in edge distance = 0.80, and for wind/seismic loads = 1.33. Allowable load =
0.50 0.80 1.33 1,763 = 938-lb.
Basic allowable single shear for fastening Hem-Fir framing to concrete with 1/2-in
Simpson Titen HD anchors in minimum 2,500-psi concrete with 4.25-in embedment =
2,210-lb. Adjustments for 3-in edge distance = 0.44, and for 1 O-minute wind/seismic
loads = 1.33. Allowable load = 0.40 1.33 2,210 = 1,176-lb.
flolCI:li>aWn
Simpson STHD8/10 Strap Ties
Install Sim son STH08 Stra Tie Holdowns in 2,500- si concrete and 6-in minimum stem wall.
Allowable tension load for Simpson STH08 Strap Ties is 2,385-lb for 2,500-psi
concrete.
Install Sim son STH010 Stra Tie Holdowns in 2,500- si concrete and 6-in minimum stem
Allowable tension load for Simpson STH010 Strap Ties is 3,730-lb for 2,500-psi
concrete.
912
938
1,176
2,385
3,730
Revised 01/24/07 Lateral Specs Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 3
Reep Engineering Consulting, Inc. Page A-1
Table A. Plan 2112 Structural Specifications & Allowable Loads (6 sheets).
Simpson L TT20B/HTT16 Strap Ties
Install Sim son L TT20B Tension Ties fastened to 3-in framin with 10-16d nails. Fasten
Allowable tension load for Simpson L TT20B Tension Ties is 1 ,750-lb (controls) for
2,500- si concrete = 1,750-lb.
Basic allowable tension load for 1/2-inX8-in long Simpson Titen HO anchors
embeded 4.125-in into 2,500-psi concrete = 2,207 -lb. Adjustments are 0.50 for no
special inspection, 0.83 for 3-in edge distance, and 1.33 wind/seismic loads.
Allowable load = 0.50 0.83 1.33 2,207 = 1,218-lb controls.
Basic allowable tension load for 1/2-inX8.5in long Simpson Wedge-All anchors
embeded 4.5-in into 2,500-psi concrete = 2,045-lb. Adjustments are 0.50 for no
special inspection, 0.80 for 3-in edge distance, and 1.33 for wind/seismic loads.
Allowable load = 0.50 0.80 1.33 2,045 = 1,088-lb controls.
Shear Wall Nailing Into Mudsill
Fasten aSB anels to mudsill with 8d nails 6-in o.c.
Basic allowable single shear load for 8d nails and Hem-Fir framing = 73-lb per NOS
Table 11 N. Adjustment for 1 O-minute wind/seismic loads = 1.6 per NOS Table 2.3.2.
Allowable shear load = (1.6)(73) = 117-lb/nail. Allowable shear wall overturning load
for 4-ft panels fastened with two rows of 8d nails @ 6-in o.c. = 1/2(48/6 + 1 )(117) =
527-lb (controls).
Fasten aSB panels to both mudsill and wall bottom plate with 8d nails @ 6-in o.c. Fasten
bottom plate at each end of shear wall to foundation with 1/2-in. dia.X 8.5-in long Simpson
Wedge Anchors (or equal) with 3X3X3/16-in flat washers at locations shown on Sheets S1/S2.
Embed anchor 4.125-in into minimum 2,500-psi concrete as specified above.
Allowable shear wall overturning load for 4-ft panels fastened with two rows of 8d
nails 6-in o.c. = 1/2 2 48/6 + 1 117 = 1,054-lb controls.
Nails (Per NOS Tables 11 Nand 2.3.2.)
Sin Ie shear for 8d common 0.131-in with 1.5-in thickness Hem-Fir side members.
Basic allowable shear for 8d common nails = 84-lb. Adjustment for 10-minute
wind/seismic loads = 1.6. Allowable shear load = 1.6 84 = 134-lb.
Single shear for1 Od common (0.148-in) with 1.5-in thickness Hem-Fir side members.
Basic allowable shear for 10d common nails = 102-lb. Adjustment for 10-minute
wind/seismic loads = 1.6. Allowable shear load = 1.6 102 = 163-lb.
Single shear for1 Od common (0.148-in) with 1.5-in thickness Hem-Fir side members.
Basic allowable shear for 10d common nails = 102-lb. Adjustment for 10-minute
wind/seismic loads = 1.6. Allowable shear load = 1.6 102 = 163-lb.
Single shear for 10d common toenails (0.148-in) with 1.5-in thickness Hem-Fir side
members = 0.83 163 = 135-lb.
1,750
1,218
1,088
527
1,054
134
163
163
135
Revised 01/24/07 Lateral Specs Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 4
Reep Engineering Consulting, Inc. Page A-1
Table A. Plan 2112 Structural Specifications & Allowable Loads (6 sheets).
Sti~~a ~ntjShealhill
aSB Shear Wall Panels ( Per NOS Table 4.3A)
Basic allowable shear for wind loads = 785-lb/ft per NOS Table 4.3A for ad nails @
6-in o.c. on edges, 12-in o.C. in the field, & framing @ 16-in o.c. per Note b.
Adjustments 0.50 for ASO and 0.93 for Hem-Fir framing. Allowable shear =
(0.50)(0.93)(785) = 365-lb/ft.
Basic allowable shear for wind loads = 1 ,205-lb/ft per NOS Table 4.3A for ad nails
staggered @ 4-in o.c. on edges, 12-in o.c. in the field, & framing @ 16-in o.c. per
Note b. Framing on panel edges is 3-in nominal. Adjustments are 0.50 for ASO and
0.93 for Hem-Fir framing. Allowable shear = (0.50)(0.93)(1,205) = 560-lb/ft.
Basic allowable shear for seismic loads = 560-lb/ft per NOS Table 4.3A for framing
@ 16-in o.c. per Note b. Adjustments are 0.50 for ASO and 0.93 for Hem-Fir
framing. Allowable shear = (0.50)(0.93)(560) = 260-lb/ft.
Basic allowable shear for seismic loads = 860-lb/ft per NOS Table 4.3A for ad nails
staggered @ 4-in o.c. on edges, 12-in o.c. in the field, & framing @ 16-in o.c. per
Note b. Framing on panel edges is 3-in nominal. Adjustments are 0.50 for ASO 0.93
for Hem-Fir framing. Allowable shear = (0.50)(0.93)(860) = 400-lb/ft.
GWB Shear Wall Panels ( Per NOS Table 4.38)
Fasten Simpson WB106 Wall Bracing metal straps with 2-16d nail to top and bottom wall
plates and 1-8d nail to each stud per manufacturers instructions. Straps may be placed on
wall in an X or V fashion. Fasten 1/2-in GWB panels to both sides of wall with NO.6 X 1.25-in
long Type S or W drywall screws @ 4-in o.c. on edges and in the field with all edges
blocked. Minimum framing material is Hem-Fir with maximum spacing of studs @ 16-in o.c.
Basic allowable unit shear for wind loads = 300-lb/ft. Adjustment Factor (AF) for
ASO is = 0.50 and AF for Hem-Fir framing = 0.93. Allowable shear =
(2)(0.50)(0.93)(300) = 279-lb/ft.
Basic allowable unit shear for seismic loads without flat metal strap bracing =
300-lb/ft. Adjustments are for ASO is = 0.50, 0.93 for Hem-Fir framing, and 0.30 for
seismic response modification coefficient (R =2) using GWB sheathing per IBC Table
1617.7.2 (2/6.5 = 0.30). Allowable shear = (2)(0.50)(0.93)(0.30)(300) = 86-lb/ft.
Basic allowable unit shear for seismic loads with flat metal strap bracing = 300-
Ib/ft for framing @ 16-in o.c. per Note b. Adjustment factors for ASO is = 0.50, Hem-
Fir framing = 0.93, and seismic response modification coefficient (R) GWB sheathing
per IBC Table 1617.7.2 = 4/6.5 = 0.62. Allowable shear = (2)(0.50)(0.93)(0.62)(300)
= 172-lb/ft.
365
560
260
400
279
86
172
Revised 01/24/07
Lateral Specs Plan 2112'{)7 Lateral-Djernes 110 mph, Exp C, & sDC D2.xls 3/3012007 5 ~
Reep Engineering Consulting, Inc. Page A-1
Table A. Plan 2112 Structural Specifications & Allowable Loads (6 sheets).
*S6ea!~~TlI!;ipVsf~(l
Nails
Basic allowable load for 10d common nails fastened with 1.5-in side members = 102-
Ib per NOS Table 11 N. Adjustment for 1 O-minute wind/seismic loads = 1.6. 163
Allowable load = 1.6 102 = 163-lb.
Basic allowable load for 8d common nails fastened to minimum 3/4-in side members
= 73-lb per NOS Table 11 N. Adjustment for 1 O-minute wind/seismic loads = 1.6. 117
Allowable load = 1.6 73 = 117 -lb.
Toenails
Allowable load for 10d common toenails 12-in o.c. = 0.83 1.6 102 = 135-lb/ft.
Allowable load for 2-1 Od common toenails @ 16-in o.c. = (0.83)(2)(12/16)(1.6)(102) =
203-lb/ft.
ladder Blocking
Place 2X framing members laid flat on wall perpendicular to truss bottom chords at
approximately equal spacing. Fasten blocking to top plate with 4-10d nails. Fasten each end
of blockin to truss bottom chord with 2-10d nails.
Allowable shear load er ladder block = 4 0.93 1.6 102 = 607-lb. 607
135
203
Revised 01/24/07 Lateral Specs Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 6
Table B. Wind Design Criteria.
Description Value Description Value
Basic Wind Speed V 3s (mph) 110 Vertical Pressures (pst)
Simplified Method per IBC Section 1609.6 Yes Roof Zone E Pressure -12.9
Importance Factor - Iw 1.00 Roof Zone F Pressure -17.7
Roof Slope (6/12) 0.50 Roof Zone G Pressure -9.3
Mean Roof Height (ft) 11.8 Roof Zone H Pressure -14.2
Exposure & Heiqht Factor (Exposure D) 1.21 Roof Overhang Zone E Pressure -24.1
Horizontal Pressures (pst) Roof Overhang Zone F Pressure -20.6
Wall Zone A Pressure 29.2 Roof Overhang Zone G Pressure -17.7
Wall Zone C Pressure 21.1 Roof Overhang Zone H Pressure -14.2
Roof Zone B Pressure 4.7
Roof Zone D Pressure 4.8
Note: Plus and minus signs signify wind pressures acting toward and away from the surfaces, respectively per ASCE
Standard 7-02.
Building Measurement Values For Use in Tables E And F
Left Wall Lenqth (ft) 32.0 Front Wall Length (ft) 28.0
Center Wall Length (ft) 16.0 Center Wall Length (ft) 52.0
Riqht Wall Lenqth (ft) 48.0 Rear Wall Length (ft) 52.0
Building Wall Height (ft) 7.8 Roof Height (ft) 8.0
Transverse Building Zone Measurements Longitudinal Building Zone Measurements
Horizontal Windforce Loading Horizontal Windforce Loading
Transverse Wall Zone A & B Width (ft) 6.4 Longitudinal Wall Zone A Width (ft) 6.4
Transverse Wall Zone C & D Width (ft) 45.6 Longitudinal Wall Zone C Width (ft) 41.6
Transverse Wall Zones A & C Height (ft) 7.8 Longitudinal Wall Zone A Height (ft) 9.4
Transverse Roof Zones B & D Height (ft) 8.0 Longitudinal Wall Zone C Height (ft) 12.6
Vertical Windforce Loading Vertical Windforce Loading
Transverse Roof Zones E & F Width (ft) 6.4 Longitudinal Roof Zones E & F Width (ft) 6.4
Transverse Roof Zones G & H Width (ft) 45.6 Longitudinal Roof Zones G & H Width (ft) 41.6
Transverse Roof Zones E & F Lenqth (ft) 24.0 Lonqitudinal Roof Zones E & G Length (ft) 26.0
Transverse Roof Zones G & H Width (ft) 24.0 Longitudinal Roof Zones F & H Length (ft 26.0
Note: Width is measured perpendicular the wind direction and length parallel to the wind direction.
Reep Engineering Consulting, Inc.
Page A-2
Revised 01/15/07 Wind Criteria Plan 2112-07 Lateral-Ojernes 110 mph, Exp C, & SOC 02.xls 3/30/2007
l
Table C. Seismic Design Criteria.
Description Reference/Calculation Value
BuildinQ Occupancy CateQorv ASCE Standard 7-02, Table 1-1 II
Seismic Use Group ASCE Standard 7-02, Table 9.1.3 I
Seismic Importance Factor, IE ASCE Standard 7-02, Table 9.1.4 1.0
Default Seismic Site Classification IBC Section 1615.1.1 0
Seismic Desiqn Cateqorv IBC Table 1616.3(1) 02
Response Modification Coefficient, R IBC Table 1617.6.2 6.5
Mean Buildinq Heiqht, h (ft) Per Plan 12.0
Building Period Coefficient: Ct (sec) ASCE Standard 7-02, Table 9.5.5.3.2 0.02
Buildinq Period, T = Cthj/4 (sec) ASCE Standard 7-02, Section 9.5.5.3.2 0.129
MCE Short Period Acceleration, SMS (g) Seismic Design Parameters Version 3.10 CD 1 .456
Site Short Period Acceleration, Sos (g) Sos = 2/3SMS per IBC Equation 16-41 0.971
MCE Long Period Acceleration, SM1 (g) Seismic DesiQn Parameters Version 3.10 CD 0.900
Site Long Period Acceleration, S01 (g) S01 = 2/3SM1 per IBC Equation 16-41 0.600
To = 0.2S01/S0S (sec) IBC Section 1615.1.4 0.124
Is - ti01/tiOS (sec) IBC Section 1615.1.4 0.618
liS t-'enoa 10 < I </ 15-( IBC Section 1615.1.4 Yes
I IS ueslgn tipectral Kesponse, "a = ~os ( IBC Section 1615.1.4 Yes
Equivalent Lateral Force Procedure ASCE 7-02 Section 9.5.5 Yes
Seismic Design Coefficient: Cs = SosIE/R ASCE 7-02 Equation 9.5.5.2.1-1 0.149
Maximum ASD Unit Shear, vmax (Iblft) Calculation per Table I 105
Story Base Shear, VStorv (Ib) Calculation per Table G 6,799
Story Shear Ratio, rmax = 10vmaxNstory ASCE Standard 7-02, Section 9.5.2.4.2 0.155
Base Story Area: As (sf) Plans 2,461
Square Root of Base Story Area, As (ft) Calculation 49.6
Reduncanv Factor, p = 2 - 20/rm"y(AR)lIL ASCE Standard 7-02, Section 9.5.2.4.2 -0.600
Minimum Redunancv Factor, p ASCE Standard 7-02, Section 9.5.2.4.2 1.00
SL Seismic Shear: E = pQE + 0.2SosD 0.149
Seismic Load Combination Factor for ASD ASCE Standard 7-02, Section 2.4.1 0.700
ASD Base Shear: VASO = 0.7VSL Calculation 0.105
Maximum Flat Roof Snow Load (pst) Building Department 30.0
Reep Engineering Consulting, Inc.
Page A-3
Revised 01/15/07 Seismic Criteria Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007
Table D. Wind Loads.
Wind Zone Zone Zone Zone Moment Moment
Zone Pressure Width Ht./Leng. Area Force Arm (ft-Ib)
(psf) (ft) (ft) (sf) (Ib) (ft)
;;i~11:\~" .... . ie, W, 11114'fif11}Htf @ 'ii~i it'i;7ij!:AorizQn,t~f1{Jl'an'~~~b~~) ~ihdi'L;p~~s tti!! ij!f.<f1111 :%i"d/'dI, "iiD!l At ''dY
'1;".
Transverse Wall Zone A 29.2 6.4 7.8 49.9 1 ,456 3.9 5,677
Transverse Wall Zone C 21.1 45.6 7.8 355.7 7,488 4.0 29,954
Transverse Roof Zone B 4.7 6.4 8.0 51.2 242 8.0 1,933
Transverse Roof Zone 0 4.8 45.6 8.0 364.8 1,766 8.0 14,125
Transverse Base Shear/Moment 10,951 51,689
Wind Shear Transferred to Roof Diaphragm Il!!11 1;;6;419
Wf'AffM+ Hi. '~i!wji'i A' j% ]F"';""'''tWt]jJ~ 1:" f,Jj11M;e,d!..~,~11!(mra5~y~t~e);tW!nQ;i(oa~~1::l1!i] i.g!~' 11!!, 'fll.. mf31
,,"
Transverse Wall Zone E -12.9 6.4 24.0 153.6 -1,989 24.0 47,728
Transverse Wall Zone F -17.7 6.4 24.0 153.6 -2,713 8.0 21,708
Transverse Wall Zone G -9.3 45.6 24.0 1,094.4 -10,197 24.0 244,717
Transverse Wall Zone H -14.2 45.6 24.0 1,094.4 -15,493 8.0 123,947
Roof Overhang Zone E -24.1 6.4 1.3 8.5 -205 32.7 6,695
Roof Overhang Zone F -20.6 6.4 1.3 8.5 -175 -0.7 -117
Roof Overhang Zone G -17.7 45.6 1.3 60.6 -1,071 32.7 34,999
Roof Overhang Zone H -14.2 45.6 1.3 60.6 -859 -0.7 -572
Total Uplift/Overturning Moment on Building -32,702 530,794
Unit Uplift on Building (psf) -13.3
I'm .,"",;....@ " ''@fmm f'I!!!!~;i lfl9tizq"in~U{Long itlJcI i.n~.m~ind/l.:,pad$1!.f,f!!;i!1:!!!~f$' Killi!!If .}fi;\i, II!\~I A
'iUtit% AI '[jJlPW'lW Wi "W@'" iF"
Longitudinal Wall Zone A 29.2 6.4 9.4 60.2 1,754
Longitudinal Wall Zone C 21.1 41.6 12.6 524.2 11,036
Longitudinal Base Shear 12,790
Wind Shear Transferred to Roof Diaphragm li::iili6;~~5
1Ft :!r~ !1'II!I:' rll~lr~~'If!!G~ll(~QngitydiPlil)!iW[nCl!~R,~9~!'1~ ,1: 11&' wi:::' r .:::':1::'
'ww
Longitudinal Wall Zone E -12.9 6.4 25.0 160.0 -2,072
Lonqitudinal Wall Zone F -17.7 6.4 25.0 160.0 -2,827
Longitudinal Wall Zone G -9.3 41.6 25.0 1,040.0 -9,690
Longitudinal Wall Zone H -14.2 41.6 25.0 1,040.0 -14,723
Roof Overhang Zone E -24.1 6.4 1.0 6.4 -154
Roof Overhanq Zone F -20.6 6.4 1.0 6.4 -132
Roof Overhang Zone G -17.7 41.6 1.0 41.6 -735
Roof Overhang Zone H -14.2 41.6 1.0 41.6 -589
Total Uplift/Overturning Moment on Building -30,921
Unit Uplift on Building (psf) -12.6
,d' i;\i\W)t" IT! """Hi , &piP. iiiw ""i""i ,,j@)iMi1WK .)f" '~@'!. !Ii"" !, ,ph
Garage Wind Loads
I'~ !'!fili!!!:'" , '!if'!. 1l6n~ itucUnal} ,Wi Q(:I IUoa(:ls!,& ;:, m Mf., ithlrA\t:w ,,~
Transverse Wall Zone A 29.2 6.4 9.0 57.6 1,680 4.5 7,559
Transverse Wall Zone C 21.1 15.6 10.5 163.8 3,449 5.3 18,105
Longitudinal Base Shear/Moment 2,564 25,664
Note: Plus and minus signs signify wind pressures acting toward and away from the surfaces, respectively per
ASCE Standard 7-02.
Reep Engineering Consulting, Inc.
Page A-4
Revised 01/15/07
Wind Loads Plan 2112-07 Lateral-Ojernes 110 mph, Exp C, & SOC 02.xls 3/30/2007
Table E. Minimum Wind Loads.
Wind Zone Zone Zone Zone Moment Moment
Zone Pressure Width Ht./Leng. Area Force Arm (ft-Ib)
(psf) (ft) (ft) (sf) (Ib) (ft)
illi,A/(i!!/' ;!:~'~j 4/!ffilj;'I~I'" ~a\nsve!rs~ri!WinCfEJ!baasiiw~ dWiL'@mal !!!"J!!!
,\"",\\~,'\"'",\",,\"H .'.' " ." ... '" HifH@jW W""F!@ . W. m "'j1
Transverse Wall Zone A 10.0 6.4 7.8 49.9 499 3.9 1,947
Transverse Wall Zone C 10.0 45.6 7.8 355.7 3,557 4.0 14,227
Transverse Roof Zone B 10.0 6.4 8.0 51.2 512 8.0 4,096
Transverse Roof Zone 0 10.0 45.6 8.0 364.8 3,648 8.0 29,184
Transverse Base Shear/Moment 8,216 49,454
Wind Shear Transferred to Roof Diaphragm ",< 6;1Q8
l~lJlr ;If!11~1\ ~:!1~.i~I}J:\:F .. .. '~~, j.~i!1ii\,\h.Pii!jl\I!1Iiii\'
Transverse Wall Zone E 0.0 6.4 24.0 153.6 0 24.0 0
Transverse Wall Zone F 0.0 6.4 24.0 153.6 0 8.0 0
Transverse Wall Zone G 0.0 45.6 24.0 1,094.4 0 24.0 0
Transverse Wall Zone H 0.0 45.6 24.0 1,094.4 0 8.0 0
Roof Overhang Zone E 0.0 6.4 1.3 8.5 0 32.7 0
Roof OverhanQ Zone F 0.0 6.4 1.3 8.5 0 -0.7 0
Roof Overhang Zone G 0.0 45.6 1.3 60.6 0 32.7 0
Roof Overhang Zone H 0.0 45.6 1.3 60.6 0 -0.7 0
Total Uplift/Overturning Moment on Building 0 49,454
Unit Uplift on Building (psf) 0.0
X'@@A ';;\ io!ii - I;'::;' ~!\!lJj\h
I :E.Y\H{{/,MP41\w~ljji @ II P!!'!MM!WW'\l I .-
Longitudinal Wall Zone A 10.0 6.4 9.4 60.2 602
Longitudinal Wall Zone C 10.0 41.6 12.6 524.2 5,242
Longitudinal Base Shear 5,843
Wind Shear Transferred to Roof Diaphragm .,< 2,922
I!~i!$;!!i;; .fl;;k \,~!~\. ;:ffijliill~I!\(~.i:tiPC!I...( LOdgit4~ i d'~! )'!:I.i ~~o/l!o'~!~,~M~11!;;:=0\Ai \4\;:~;:!/;;~ I@!!:i! ..M'!!!'!,.,,!
LonQitudinal Wall Zone E 0.0 6.4 25.0 160.0 0
Longitudinal Wall Zone F 0.0 6.4 25.0 160.0 0
Longitudinal Wall Zone G 0.0 41.6 25.0 1,040.0 0
LonQitudinal Wall Zone H 0.0 41.6 25.0 1,040.0 0
Roof Overhang Zone E 0.0 6.4 1.0 6.4 0
Roof OverhanQ Zone F 0.0 6.4 1.0 6.4 0
Roof OverhanQ Zone G 0.0 41.6 1.0 41.6 0
Roof Overhang Zone H 0.0 41.6 1.0 41.6 0
Total Uplift/Overturning Moment on Building 0
Unit Uplift on Building (psf) 0.0
.r,ip'@i\W MiiiM@ WFiIJMMW" w!@' @ A;i!\! MjiIJ "".@@\!!!HMCc' ..IHI.''''\A'0 0HM"M'll@Mi'"'!%P @"'\\1%'\I. !MMi ..M mW&' t@
Garage Wind Loads
I 1M i;WV))),"\::!ii~i\' ,!,!!!.. ',,,,,'.' Lbnt ituCl i nal)l!WioCl+Loaas %;!lli:~!!i,!jl!11.i' l'11:ffi11111;;) 'jHAi!!~
';'.'.- ..--.- .-/-. -.- ,.,.. ."";;",,,~<.-,,,;;,";,.;",'i';""""';"I'8,,'j:@:i
Transverse Wall Zone A 10.0 6.4 9.2 58.9 589 4.6 2,708
Transverse Wall Zone C 10.0 15.6 11.9 185.6 1,856 6.0 11,046
Longitudinal Base Shear/Moment 1,223 13,754
Note: Plus and minus signs signify wind pressures acting toward and away from the surfaces, respectively per
ASCE Standard 7-02.
Reep Engineering Consulting, Inc.
Page A-5
Revised 01/15/07 Min. Wind Loads Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007
Table F. Seismic Loads.
Load Heightl Length Area Weight Shear
Building Component Width Load
(pst) (ft) (ft) (st) (Ib) (Ib)
Roof Diaphraqm & Ceiling 15.0 2,461 36,915 3,859
20% of Flat Roof Snow Load, Pf 0.0 2,461 0 0
One-Half Exterior Walls 15.0 2,461 18,458 1,929
One-Half Partitions 10.0 1,933 9,665 1,010
Roof Diaphragm Tributary Dead Load 41,748
Base Shear ~'~ 7QQ
I'm ^'#;;Pj~;ll'~~ .' "Mgrn~n~~!rqnn~l.Ii!i1~iig:nilU~'~'~i.Qg!~~I~ml~lF~@\jiW#"~P l(~b
Force Dist. Moment
(Ib) (ft) (ft-Ib)
Roof Diaphragm & Ceiling 3,859 8.0 30,871
20% of Flat Roof Snow Load, Pf 0 8.0 0
Exterior Walls 1,929 8.0 15,435
Partitions 1,929 8.0 15,435
Total Moment Due to Seimic Forces 1,010 61,742
Total Moment Due to Wind Forces ;,;"530;7~..~
Building Dead Load Restorative Moments
Roof Diaphraqm & Ceiling 36,915 16.0 590,640
20% of Flat Roof Snow Load, Pf 0 16.0 0
Exterior Walls 36,915 16.0 590,640
Partitions 19,330 16.0 309,280
Total Retorative Moment 1,490,560
6/10 of Restorative Moment ;';"i!:89~';e36
I,,,@,,,, ......'.1,
I;dl B m#;:~~ ';:11";: ~ . gfl~;;~:;:;Fih~~ if.' ';;" .._~.. ;;!'.lllr~ll;r @"'F" ''0m. ?ill;!;, ,d'li::!bw :~
Item Reference Value
Ps = Total vertical deSign load at and above level 1 = )\~{;E 9.5.5.7.2 36,915
hs = Story height (in) )\~C;E 9.5.5.7.2 96
Design story drift between level 1 and level 0 = From Table J 0.211
strength Level seismic shear force, VSL (I b) )\S(;E 9.5.5.7.2 9,518
Deflection amplification factor for aSB shear walls ((;0) )\S(;E Table 9.5.2.2 4.0
Check stability coefficient, e = PxLVVshsCd < 0.10 )\SCE 9.5.5.7.2 0.002
P-Delta Effects are not required to be consider if e </= ASCE 9.5.5.7.2 0.100
)\lIowable story dnft ~a - 0.020hs (in) 2003 IBC 1617.5.4 1.92
Reep Engineering Consulting, Inc.
Page A-6
Revised 01/15/07 Seismic Loads Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007
Table G. Controlinq Shear Loads.
Main Floor level Second Floor level
Transverse longitudinal Transverse longitudinal
Wind Load (Ib) 6,479 6,395 N/A N/A
Minimum Wind Load (Ib) 6,188 2,922 N/A N/A
Seismic Load (Ib) "" '~.i7 I",\["!m!imf 'B'ii;i'f!i'6;"l.9.~. N/A N/A
IRBii '""" . llillill@W. 04i, ,,$ Wj;;
Garage
Type load Transverse longitudinal
Wind Load (Ib) .."m!,ii!'f!'f!'s ill\[I'2"564
".,
Minimum Wind Load (I b) 1,223
Seismic Load (I b) Included Above
Note: Bolded/shaded cells indicate controling shear loads.
Reep Engineering Consulting, Inc.
Page A-7
Revised 01/15/07Controling Loads Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007
Table H. Wind Shear Wall Loads.
Transverse loads
Floor level Main Floor Level Second level
Wall Identification 1 2 3 4 Check
Wall Type aSB GWB aSB aSB Total
Applied Shear (Ib) 2,362 2,801 2,801 1,080 9,044
Wall Lenqth (ft) 24.0 32.0 16.0 48.0
Applied Unit Shear (Ib/ft) 98 88 175 22
Shear Wall Lenqth (ft) 8.0 22.0 16.0 42.0
ijesistivetU riitSbead(loZft)t%' ~1111 !1111) 29$ I~l!:'~~~", 127'; ~fb.!175 Ij'lk,j;WWIZti , M'~~ll.;;;t;;;;i;). ;1~l~;II~, #lll!l\ i;jil1;, Mw.lllltlj&+ I Jlil'pp],l,1?k
Shear Wall Heiqht (ft) 7.8 7.8 7.8 7.8
Unit DL on Wall (Ib/ft) 454 140 330 195
0.66fUnit DL on Walll (lb/ft) 302 93 220 130
Max. Hold-Down 4.0-ft SW (Ib) Ij",,'1'l'6~8
Max. Hold-Down 5.0-ft SW (Ib) 760
Max. Hold-Down 17 -ft SW (Ib) 200 -394 -839
Max. Hold-Down 18-ft SW (Ib)
Max. Hold-Down 26.0-ft SW (Ib -1,489
Note: Maximum hold-down loads are identified in shaded and balded cells.
longitudinal loads
Floor level Main Floor level Second level
Wall Identification A B C D Check
Wall Type aSB aSB aSB aSB Total
Applied Shear (I b) 1,066 2,132 2,132 1,066 6,395
Wall Lenqth (ft) 28.0 52.0 22.0 74.0
Applied Unit Shear (lb/ft) 38 41 97 14
Shear Wall Lenqth (ft) 18.0 21.5 6.0 38.0
Resistive Unitj$f\eari"(lp!ft)!w;ili"". ",'IV' 99 """"'L; ~ :ln~:i;Jj:" ""pl,:"I>w>;; .;n;!1i,j;jj!!I!~\ ~ I !"j!ll' iff'>
Shear Wall Heiqht (ft) 7.8 7.8 7.8 7.8
Unit Wall DL (lb/ft) 360 390 1,100 360
0.66rUnit DL on Walll (Ib/ft) 240 260 733 240
Max. Hold-Down 3.0-ft SW (Ib) 111,67,1 -141
Max. Hold-Down 4.0-ft SW (Ib) -256
Max. Hold-Down 5.0-ft SW (Ib) -126 143 -376
Max. Hold-Down 6.0-ft SW (Ib) 13
Max. Hold-Down 8.0-ft SW (Ib) -498
Max. Hold-Down 1 0.5-ft SW (Ib) -592
Note: Maximum hold-down loads are identified in shaded and balded cells.
Reep Engineering Consulting, Inc.
Page A-8
Revised 01/15/0lNind Shear Loads Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007
Table I. Seismic Shear Wall Loads.
Transverse loads
Floor level Main Floor level Second level
Wall Identification 1 2 3 4 Check
Wall Type ass GWS ass ass Total
Applied Shear (Ib) 1,133 2,266 2,266 1,133 6,799
Wall LenQth (ft) 24.0 32.0 16.0 48.0
Applied Unit Shear (Ib/ft) 47 71 142 24
Shear Wall LenQth (ft) 8.0 22.0 16.0 42.0
s'esistiv~zl:Jnit1;Shij~"~r",l'lbZftlw"'nlWf. I AiPJ 42 tI ' Ai%iiWdiWKW 8~' In l~it1t ~l
:@@ILy L~
" '-
Shear Wall Heioht (ft) 7.8 7.8 7.8 7.8
Unit DL on Wall (Ib/ft 454 140 330 195
0.60rUnit DL on Wall] (Ib/ft 272 84 198 117
Max. Hold-Down 4.0-ft SW (Ib) 560
Max. Hold-Down 5.0-ft SW (Ib) 593
Max. Hold-Down 17 -ft SW I Ib 89 -479 -726
Max. Hold-Down 18-ft SW I Ib
Max. Hold-Down 26.0-ft SW (Ib -1,311
Note: Maximum hold-down loads are identified in shaded and balded cells.
longitudinal loads
Floor level Main Floor level Second level
Wall Identification A S C 0 Check
Wall Type ass ass ass ass Total
Applied Shear (Ib) 1,133 2,266 2,266 1,133 6,799
Wall Lenoth (ft) 28.0 52.0 22.0 74.0
Applied Unit Shear (Ib/ft) 40 44 103 15
Shear Wall LenQth (ft) 18.0 21.5 6.0 38.0
R~sistivel:Jnit:Shear ' 'I 6%ft) %;\\;'\\:1 %\%,@., ",.. 1'105 11"1';";318 "'30 ~li;:;"1 % 4, ,'" "Id'll;l;;"!} "",n:,;;;,' IAi
fij
Shear Wall Height (ft I 7.8 7.8 7.8 7.8
Unit Wall DL (Ib/ft) 360 390 1,100 360
0.60[Unit DL on Wall] (Ib/ft 216 234 660 216
Max. Hold-Down 3.0-ft SW (I b) ;"1~956
Max. Hold-Down 4.0-ft SW (Ib) -193
Max. Hold-Down 5.0-ft SW (Ib) -36 258 -301
Max. Hold-Down 6.0-ft SW (Ib) 141
Max. Hold-Down 8.0-ft SW (Ib) -373
Max. Hold-Down 10.5-ft SW (Ib) -406
Note: Maximum hold-down loads are identified in shaded and balded cells.
Reep Engineering Consulting, Inc.
Page A-9
Revised 01/1$a1smic Shear Loads Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007
.
Table J. Roof Diaphragm Calculations.
Description Reference Equation/Comment Value
Roof/Floor Diaphragms Load Calculations
Diaphragm Shear/Weight IBC Sect. 1620.4.3 Fo/Wo = 0.21ESos = 0.194
Diaphragm Weight (Ib) Report Table G W 0 = wpARoof = 41 ,748
Strength Level Diaphragm Shear (I b) IBC Sect. 1620.4.3 Fp = 0.2IESOSWo = QE 8,105
Strength Level Diaphragm Unit Shear (Ib/ft) Calculation Vr = 1/2Q/b = 135
Service Level Seismic Diaphragm Shear (Ib) ASCE Sect. 2.4 Q = 0.7E = 0.7QE 5,673
Service Level Diaphragm Shear (Ib) Report Table G Q= 6,799
Diaphragm Span (ft) Design Drawings b= 30
Service Level Diaphragm Unit Shear (lblft) Calculation Vr = 1/2Q/b = 113
Shear Wall Deflection Calculations
Area of Shear Wall Chords (in2) Design Drawings AChord = 2(1.5)(5.5) = 16.5
Shear Wall Height, h (ft) Design Drawings h= 7.8
Minimum Shear Wall Length, b (ft) Design Drawings b= 3.0
Maximum SL Seismic Unit Shear, Vr (Iblft) Table I v= 529
Shear Wall Bending Deflection, Yb (in) Calculation IVh = 8vrh3/EAb 0.031
Shear Wall Shear Deflection, Ys (in) Calculation Ys = vh/Gt 0.049
Shear Wall Nail Spacing, S (in) Specifications S= 6
Unit Shear Per Nail, vnail (Ib) APA Desiqn Guide1 vnail = vIS 67.5
Nail Load Factor, Vf APA Desiqn Guide1 Vf = vnail/616 0.110
Nail Slip Factor, en (in) APA Desiqn Guide1 en = (vn~n!616);s.UHj 0.00152
Nail Slip Deflection, Yns (in) APA Desiqn Guide1 Yns = 0.75hen 0.00074
I Hold-LJown LJetlectlon, Yhd (In) APA Report T2002-17, Table 3 for nails. 0.130
I otal Shear Wall LJetlectlon, Ysw (In) I Calculation Ysw - Yb +Ys + Yns + Yhc 0.211
IAllowable Story LJntt, Ya (In) IBC Table 1617.3.1 Ya =/< U.ULun 1.87
Roof Diaphragm Deflection Calculations
Modulus of Elasticity-Diaphragm Chord, E (psi NOS No.2 Hem-Fir 1,300,000
Area of Diaohraam Chords (in2) Design Drawings AChord = 2(1.5)(5.5) = 16.5
Moment of Intertia of Diaohraam Chords (in4) Calculation I = 2Achord(b/2)2 = 1,069,200
Diaphraqm Length (in) Design Drawings L= 624
Blocked Bending Deflection (in) Calculation IVh = 5vrL 4/384EI 0.19
Shear Modulus, Gt (psi) Table A_31 7/16-in aSB 83,500
Shear Deflection (in) APA Desiqn Guide1 Ys = vL/4Gt 0.21
Diaphragm Nail Spacing, S (in) Specifications S= 6
Unit Shear Per Nail, vnail (Ib) APA Desian Guide1 Vnail = vIS 67.5
Nail Slip Factor, en (in) APA Desiqn Guide Table A-21 0.006
Nail Slip Deflection, Yns (in) APA Desian Guide 1 Yns = 0.188Len 0.059
Chord Splice Deflection, Yes (in) APA Report T2002-17, April 17, 2002 0.063
Total Blocked Deflection, Yd (in) Yd = Yb +Ys + Yns + Yes 0.52
Factor for Unblocked Diaphragms APA Report T2002-17, April 17, 2002 2.50
Unblocked Diaphragm Deflection (in) APA Desian Guide 1 Calculation 1.31
Check Dlaph.lShear Wall Deflection Ratlo>2.C Calculation Yd/ysw ~/> L.U"( 6.2
Diaphragm/Shear wall deflection ratio is > 2.0 so assumption that diaphragm is flexible is okay per ASCE 7-02 Standard,
Section 9.5.2.3.1.
Reep Engineering Consulting, Inc.
Page A-1 0
Revised 01/25Jiiof Diaphragm Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 15
,
Table J. Roof Diaphragm Calculations.
Diaphragm Chord Splice & Stress Calculations
End Wall Diaphragm Shear (Ib) Report Table G VEnd = Q/2 3,399
Diaphragm Span (ft) Design Drawings b= 30.0
Diaphragm Length (ft) Design Drawings L= 52.0
Diaphragm Unit Shear (Iblft) Calculation v r = V /b = 113
Diaphragm Moment (ft-Ib) Calculation M = vrLL./8 = 38,299
miap t! fag mi~~horCJ~~Q(be {IPJl!;ri%\??iiifb" "& j!i[J Q'a]culatiom . ':~b~!i:liIFilfffU '0W01iJiMttl1t,19t
" "& m
Allowable Nail Load (Ib) NDS Table 11 N H-F & 10d Common 102
Adjustment For Wind/Seismic Loads NDS Table 2.3.2 10-minute loads 1.6
Adjusted Allowable Nail Load (Ib) Calculation F = 1.6FNail 163.2
Minimum Number of Nails Required At Splice~ Calculation NN-Min = C/F A 7.3
Maximum Nail Spacing at Splices (in) S= 6.0
Minimum Splice Length (in) Calculation LSPliee = SNN-Min 44.0
Desiqn Splice Length (in) Design Drawings 9-10d Common Nails 48.0
~!!()\.vgpl~i~lJ)icTphragmf'~no~CJkfiQ'fce~1;~lbF:'m~.tF 'i"'" .' ,'iWhw..i!'i Sf;;;
'M;' "Wl II
Axial Chord Stess (psi) Calculation Fell = CIA = T/A 73
Allowable Parallel Compressive Stress (psi) WWPA Table 1 NO.2 Hem-Fir 1,250
Allowable Parallel Tensile Stress (psi) WWPA Table 1 NO.2 Hem-Fir 500
Note 1: Diaphragms And Shear Wall - Design/Construction Guide, November 2004.
j@UWl&t' @ihj@& .'MkMWI[Jb @WHAk", F _iiWm ,,:! i1i'mh, m It<k\%iiiA '@'\@iA .v!iWWt.......i"!!W..
Roof Uplift Calculations
Description Reference Equation/Comment Value
Roof Truss Span, b (ft) DesiQn DrawinQs 32.0
Tributary Area to Truss Connection (sf) Trusses @ 24-in 0.( A = 2b/2 = b 32.0
Maximum Wind Uplift Pressure (psf) Zone F For 120-mph & Wind Exposure C -17.7
Maximum Wind Uplift Load At Connection (Ib) Fup = pA -565
Allowable Roof Unit Dead Load, Wdl (psf) DeSign Cntena Wdl - L/"{I OJ 10.0
Roof Dead Load to Truss Connection (Ib) rOL - WdlA 320
Net Load to Truss Connection (Ib) FNel = Fup + FOL ';" -245
j
Allowable Uplift For Simpson H2.5A Clip (Ib) SPF/Hem-Fir with 160% Increase 535
Maximum Wind Uplift Pressure (pst) Zone F For 11 O-mph & Wind Exposure C -17.7
Maximum Wind Uplift Load At Connection (I b) F Up = pA -565
Net Load to Truss Connection (Ib) FNel - Fup + FOL ~i" It::'
Allowable Uplift For Simpson H 1 Clip (Ib) SPF/Hem-Fir with 160% Increase "i"i Jt"AI In
.,...
Reep Engineering Consulting, Inc.
Page A-1 0
Revised 01/2511iof Diaphragm Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 16