HomeMy WebLinkAbout316 Viewcrest Ave Technical - Building
TECHNICAL
3 \ ~ ~l~W CrtsJ- A\fe
Ntl0 S f ~
~O~~20'L
\ <0 fO--~es
-,
~
III
SOUND STRUCTURAL SOLUTIONS
E N GIN E E R S
Client
C. Anderson Homes & Development
Chris Anderson
8215 184th Dr SE
Snohomish, WA 98290
360-243-8398 phone
360-243-8398 fax
s0601011
SSS # I
Plan 1465
Project
Identification 1 Story SFR
Chao Chang
Not Valid Without A Wet Signiture
Section
1
2
Engineering Calculations
Wind & Earthquake Design
Framing Design
Date
1/24/2006
Engineer Cophas
DSF
{Z.,
Description
oriqinal contract
21118 66th AVENUE WEST - LYNNWOOD, WA 98036 - PH: 425-778-1023 - FAX: 206-260-7490
Lateral Analysis
Plan 1465
s0601011
I~ ~"ISOOND STRUCTURAL SOLUTIONS
~~Q "N G' 1 .. E E. .:R 'J
21118 66th AVE W - LYNNWOOD, WA 98036
PH: 425-778-1023 - FAX: 260-260-7490
Governing Code: 2003 International Building Code all references in right margin are
2003 IBC unless specificly noted otherwise. [Page numbers]
1603.1 General Desiqn Criteria ~
Desion Loads ( lSf)
Dead Live Snow
(flat roof)
Roof 15 20 25
Floor 10 40 nja
Wall 10 nja nja
1603.1.4 Wind Desiqn Criteria [1Zg]
1. Basic Wind Speed 85 mph
2. Wind Importance Factor Iw 1.00
3. Wind Exposure Category B
4. Internal Pressure Coefficient +j- 55
5. Components and Cladding design pressure +/- 10 psf
1603.1.5 Earthquake Desi9n Data [1Zg]
1. Seismic Importance Factor IE 1.00
2. Short Period Acceleration Ss 1.120
2. 1-Second Accelleration S1 0.470
3. Site Class D
4. Spectral response coefficient SDS 0.79
4. Spectral response coefficient SDl 0.48
5. Seismic Design Category D
6. Seis. Force Resisting System 1. K.
7. Design Base Shear 7167 Ibs
8. Seismic Response Coefficient Cs
9. Response Modification Factor R 6.5
10. Analysis Procedure used Simplified
Table of Contents
DC
WF
EF
DL
FR
55
5W
5CH
General Lateral Design Criteria
Determination of Wind Forces
Determination of Earthquake Forces
Allowable Stress Design Loads
Shear walls in the Front to Rear Direction
Shear walls in the Side to Side Direction
Shear flow calculations
Schedules
V 1.0
Section 1
F 1609 [284]
T1604.5 [272]
1609.4 [290]
ASCE 7 F 6-5 [49]
1609.6.2.1.1 [291]
T1604.5 [272]
F1615(1) [304]
F1615(2) [304]
T1615.1.1 [322]
EQ 16-38/40 [322]
EQ 16-39/41 [322]
1616.3 [326]
T1617.6.2 [334]
T1617.6.2 [334]
1617.5 [331]
DC1
In
Wind Loads Section 6.4 SEI/AseE 7.02
Roof Pitch
Ridge Elevation
Eave Height
Mean Roof Height, h
Main Windforce Loadin!:l F6-2 f411
End zone distance, 2a, where "an equals the smaller of 10 percent ot least horizontal
dimension (I.h.d.) or O.4h, but not less than either 4 percent of Ihd or 3 feet.
Diaphragm 1
I.h.d. (ft) = 27:,1~F A
2a (ft) = 6 Areas ,,\56
Simplified Wind Load Method 6.4 f271
5 :12
16:5 ft
1d.5;ft
13.5 ft
or
22.62 degrees
6.2 [24J
o
'..348
A
76'
o
1
Basic Wind Speed
Wind Exposure Category
Wind Importance Factor
Height & Exposure Adjustment
Wind Pressures 1609.6.2.1 f2911
P 5 = ^,.I w' P 530
85 mph
B
1.00
^ = 1.00
1609.3 [289J. F1609 [284J
1609.4 [290J
1609,S [290J, T1604.5 [272J
T1609.6.2.1(4) [297J
EQ 16-34 [291J
Minimum pressures shall not be less than assuming the pressures for
zones A, B, C, & D all equal 10 pst, while zones E, F, G, & H all equal zero.
Zone Pressures. (A)(I",)(DS30) T1609.6.2.1(1J f2941
85 Horizontal Pressures
o 8 C
2.30 0.40
1609.6.2.1.1 [291J
Vertical Pressures
F G
-8.70 -4.60
D
F x= I: (p sx-x)
x= A
Diaph
1
Transverse
Fx = 5463 Fxmin = 8010
Longitudinal
F x = 2527 F xmin = 2270
V1.0
Section 1
VVF1
Earthauake Loads Section 9.0 SEIIASCE 7-02
Effective Seismic Weight (pst)
roof floor wall
15 10 10
Effective seismic weight at Story (x)
Diaphragm
mise load
1
weight (Ibs)
Site Clasification and Criteria Selection 1615. 1616, 1617
USGS Probabilistic Hazard Lookup Link hlto:/Ieadesian.cr.usas.aov/htmlllookuo-2002-intero.html
hlto:/Ieaint.cr. usas. aov/ea/html/ziocode. html
1.1200
0.4700
D
1.052
1.530
I
1.00
D
1. K.
6.5
Short Period Acceleration
1-Second Acceleration
Site Class
Site Coeffiecient, Fa
Site Coeffiecient, Fv
Seismic Use Group
Seismic Importance Factor
Seismic Design Category
Seis. Force Resisting System
Response Modification Factor
5s
51
IE
R
Desian Spectral Response Acceleration Parameters 1615.1.213 r3221
Substitute equations 16-38 & 16-39 into 16-40 & 16-41 respectively,
2
S OS=-.F a'S s
3
2
S 01 =3'F v'S 1 5Dl = 0.48
Simplified analvsis Procedure. Seismic base shear 1617.5 r3311
1.2.S OS
v= .w
R
Vertical Distribution, Forces at each level 1617.5.2 [332J
1.2.S OS
F = .w
x R x
5DS =
0.79
v=
7167
Ibs
Diaphragm
1
7167
Ibs
V 1.0
Section 1
Area Base
18521
Wx
49425
F1615(1) [304J
F1615(2) [304J
T1615.1.1 [322J
T1615.1.2(1) [323J
T1615.1.2(2) [323J
1616.2 [326J
T1604.5 [272J
1616.3 [326J
T1617.6.2 [334J
T1617.6.2 [334]
EO 16-38/40 [322J
EO 16-39/41 [322J
EO 16-56 [331J
EO 16-57[332J
EF1
Allowable Stress Desio" Loads For Wood lac 2003
Design shall resist the applicable load combinations of Chapter 16.
Shear resistance of diaphragms and shearwalls shall be based on the Principle of Mechanics.
Desian per Alternative Basic Load Combinations
For worse case effect with wind load, L & S shall be zero. Equations 16-14, 16-15, & 16-16 become,
O+O)W
Where w equals 1.3, W equals Fxof the respective diaphragm, and D shall be multiplied by two-thirds.
For worse case effect with seismic load, L & S shall be zero. Equation 16-18 controls,
0.9 0 + E/1.4
, substitute Equation 16-51 for E
(p Q E - 0.2 S OS 0)
0.9 0 + , simplify & arrange variables
1.4
(0.9 - 0.14 S OS) 0 + ~ Q E
1.4
Where QE equals F x of the respective diaphragm.
Principle of Mechanics
Sum the forces in the horizontal direction, diaphragms and shearwalls shall resist,
Wind Design Loads, 1.3 Fx
Front to Rear Side to Side
I Diaphragm Force (Ibs) Force (Ibs)
I 1 10413 3285
Seismic Design Loads, (p/1.4) F x
p=
Force (Ibs)
6399
Sum the moments about the base of a shearwall, overturning shall resist,
(v.w).h - ~ (D.: + P.w)
(v.w).h - (0.9 -0.14 S DS) (D.: + P.w)
for wind
for seismic
V 1.0
Section 1
2301.2.1 {445J
2305.1.1 [458J
1605.3.2 {274J
1605. 1 {273J
1605.3.2 {274J
1609.1.3 {283J
1605.1 {273J
1617.2.2.2 {331J
DL1
Princiole of Mechanics. cont. _
Where, v= shear per linear foot of shearwall
w= width of shearwall
h= height of shearwall
D = resisting dead load centered over shearwall
p= resisting dead load at end of shearwall
Free Body Diagram of a ShearWall
p
o
,Ir
...
I'
~.W)
h
SIll MCIEN1S
rMWT CCIID
L.-J
...
Shearwall calculations follow, where,
Vx
%
VDx
VTx+1
VTx
L
V
VF
Max T x
Vs
w
h
dr
dra
df
dfa
TWX+l
Twx
TeX+l
Tex
V 1.0
Total force in the diaphragm above story (x), pounds (Ibs)
Percent of Vx tributary to the shearwalls (SW) in the wall line
Force from the diaphragm above that transfers to the SW's, Ibs
Force from the SWs above that transfers to the SW's, Ibs
Total force in the SW's (VOx + VTx+1), Ibs
Total length of SWs (L w), feet (ft)
Linear force in the SW's (VTxlL) , pounds per foot (plD
Greater of v induced by wind or earthquake, plf
Maximum uplift force of the SW's, Ibs
Greater of v in the sheathing induced by wind per _ or earthquake per _, plf
Width of SW, ft
Height of SW, ft
Tributary distance of roof (used to calculate 0) along the width of the SW, ft
Tributary distance of roof (used to calculate P) adjacent to the width of the SW, ft
Tributary distance of floor (used to calculate 0) along the width of the SW, ft
Tributary distance of floor (used to calculate P) adjacent to the width of the SW, ft
Wind uplift force of the SW above that transfers to the SW, Ibs
Wind uplift force of the SW, Ibs
Earthquake uplift force of the SW above that transfers to the SW, Ibs
Earthquake uplift force of the SW, Ibs
Section 1
DL2
Wall Line Story (xl Direction Sheathing SW Dimensions Tributary Dead Loads Wind Uplift Earthquake Uplift
Shear
1 1 F-R VS w h dr dra df dfa T Wx+1 Twx TeX+1 Tex
WIND E.QUAKE NG(6.125 1.75 9 2419 1666
VTX+1 NG(6.125 1.75 9 2419 1666
% of Vx 12.0.0(0 10..5%
Vox 961.2 671.9367
VTx 961.2 671.9367
L 3.50.
v 275 192
VF 275
Max T x 2,419 1,666
Wall Line Story (xl Direction Sheathing SW Dimensions Tributary Dead Loads Wind Uplift Earthquake Uplift
Shear
2 1 F-R VS w h dr dra df dfa T Wx+1 Twx TeX+1 Tex
WIND E.QUAKE 148 11.50. 9 2 2 1117 682
VTX+1 148 7.25 9 2 2 1288 884
235 2.83 9 2 2 1466 10.93
% of Vx 50..0.% 50..0.%
Vox 40.0.5 3199.698
VTx 40.0.5 3199.698
L 21.58
v 186 148
VF 186
Max Tx 1 ,466 1,0.93
Wall Line Story (xl Direction Sheathing SW Dimensions Tributary Dead Loads Wind Uplift Earthquake Uplift
Shear
3 1 F-R VS w h dr dra df dfa T Wx+1 Twx T ex+1 Tex
WIND E.QUAKE 158 6.50. 9 2 2 1360. 10.0.7
VT x+1 158 9.50. 9 2 2 1240. 865
% of Vx 3~:D%I>3.!:}.5%"
Vox 30.43.8 2527.762
VTx 30.43.8 2527.762
L 16.0.0.
v 190. 158
VF 190
Max T x 1,360. 1,0.0.7
V 1.0
Section 1
FR1
Wall Line Story (x) Direction Sheathing SW Dimensions Tributary Dead Loads Wind Uplift Earthquake Uplift
Shear
A 1 S-S VS w h dr dra df dfa TWX+1 Twx T ex+1 Tex
WIND E.QUAKE 225 3.00 9 3 4 216 977
VTx+1 169 4.00 9 11 2 94 832
225 3.00 9 11 2 181 935
% of V x 1'59,gro1!:: '50.0%:0 184 3.67 9 14 158 908
VOx 1263.6 3199.698 208 3.25 9 14 201 958
VTx 1263.6 3199.698 153 4.42 9 14 82 818
L 21.33
v 59 150
VF 150
Max Tx 216 977
Wall Line Story (x) Direction Sheathing SW Dimensions Tributary Dead Loads Wind Uplift Earthquake Uplift
Shear
B 1 S-S VS w h dr dra df dfa T Wx+1 Twx TeX+1 Tex
WIND E.QUAKE 53 20.00 9 -416 -238
VTX+1 68 3.50 9 81 348
53 7.33 9 -34 212
% ofVx 50:0% 59.90/0 53 9.50 9 -100 135
VOx 1263.6 3199.698 53 5.33 9 26 283
VTx 1263.6 3199.698 53 15.25 9 -273 -69
L 60.91
v 21 53
VF 53
Max T x 81 348
V 1.0
Section 1
SS1
1-
Shear Wall SummarY
Story Line Width SW
1 3.50 PF 275
2 21.58 B 6 186 82% 235 98% STHD8 1466
3 16.00 B 6 190 85% 158 66% STHD8 1360
A 21.33 A 6 150 100% 225 93%
B 60.91 A 6 53 35% 68 28%
V1.0
Section 1
SW1
I
I
Shear Transfer Connections
II)
:9
II)
:9
II)
:9
II)
Cll
;;
'(j
l'G
C.
l'G
o
3:
en
"i
CJ
'Q.
>.
I-
N
I.C'.i
0>
~
o
1.0
'<t
N
<0
~
.!!l
'iij
C
-
c
ro
en
"'C
<0
~
1.0
(of)
<(
C
o
II)
a.
E
en
.!!l
'iij
Z
"'C
<0
~
IlOIf
('IiI'OOS (R rm
lIlH lUG)
SW'x'
PER PlAIt
f'UUt
em- CR lUG)
SW'y'
PER PlAIt
f'UUt
~ (;f! tuG)
fOOf€lAQ
Fasteners and Spacing
'<t
a.
I-
...J
C
o
II)
a.
.S
(f)
47
31
26
21
20
15
11
9
7
7
6
II)
:9
1.0
0>
1.0
II)
:9
o
(of)
~
Il:!
N
I
c
o
II)
a.
E
(f)
10
6
5
4
4
3
2
2
1
1
1
f
'"
m -
(muss tJt I. i.
1m "TCoW) ~ ~
~~
.
~
.
f
~~
~~
:-~
~
t
-~
Fi.O('.fl
. . · ('Il<C 'I
CANlIDDlOO
W/;lJ. lU1EI!lOR SW)
;;:..-
NOTE: SEE 11"{ SiEARWM.L smmutE Foo FASlENERS MIl ~A(JIG
-
ryp SHEAR FLOW CONNECTIONS DIAGRAM
N.l.S. iH:ARfl.CW 0011116
V1.0
Section 1
II)
:9
1.0
~
'<t
~
I
c
o
II)
a.
E
en
33
22
18
15
14
11
8
6
5
5
4
16
11
9
7
7
5
4
3
2
2
2
II)
:9
II)
:9
o
~
N
N
~
0>
II)
:9
II)
:9
II)
:9
()
I-
a
c
o
II)
a.
.s
(f)
(j)
-
ro
a::
x
~
OJ
<(
ro
:0
N
-
~
co
N
(of)
~
'<t
<0
<0
~
o
N
~
~
(j)
-
ro
a::
x
~
OJ
<(
ro
:0
to
-
1.0
-
Q)
-
ro
a::
x
~
OJ
<(
.~
"'C
to
-
1.0
(j)
-
ro
a::
x
(of)
'-'
OJ
<(
ro
:0
N
-
~
72 106 133 89
48 70 88 59
41 75 50
32 60 40
31 57 38
12 44 29
9 33 22
25 17
22 14
21 14
16 11
FlOlR
~ at LUG)
~ liar
(IlLISS CR
RmI AT G.W.E1
2r4 IIN flAT
flOQ( A1 !AJC(
(l!me) 00
ElXI NW
m.. TQ.flOOl
ttmECl1lll
FUlCR
(RN at lUG)
9J.
r- RlII<<lA 1IllM
NOTE: m-10-WNJ.. FlOOfHD-WAlL
&: Ft~- T()"'51Ll COONEC11ONS PER liE
flEARWJ\LL SOiEDIAE ARE till.I REaRm
TYP ALTERNAlE SHEAR FLOW
N.IS. JILT Sf:AR fl(W CMl16
EI<E NAl.S
EI<E NAl.S
W,lU SiEA lHtro
(!PUttS AI.J.O'ID
eN. Y AS SOO'w.)
Et<< NAl.S
S'UCE Al..LO'If.D
AT liAS!; a:- IN.l
Ef<l1W.S
Era: IW.S
SW2
SHEARWALL SCHEDULE *1 IIIII ~~ s~uJ~~ ~L~I~S
1 Materials per Section 2303, and construction per Section 2304 of the 2003 International Building Code.
2 Construct cripple walls per shearwall above, and gable-ends per shearwall below, unless noted otherwise (u.n.o.)
3 Pressue treated 2x HF, u.n.o., sill plate with anchor bolts embedded at least 7 inches, or expansion anchors
embedded at least 4 inches. Use 2" x 2" x 3/16" washers or greater as required. There shall be a minimum of two
bolts per piece spaced not more than 6 feet apart, with one bolt located not more than 12 inches or less than 4
inches from each end of each piece.
4 Connectors per Simpson Strong-Tie or equal. LTP4, LTP5, and LS70 can be substituted for A35.
FLOOR: Install A35's on rim joist or solid blocking between joists.
ROOF: Install H1's on all truss/rafter bearings (including walls not designated as SW), and A35's on gables. When
the specified A35 spacing is less than 24"oc, A35's are required on solid blocking between truss/rafter bearings to
the SW top plate (H2.5's can be substituted for H1's at these locations).
5 Common nails shall meet the following minimum dimensions: 8d=0.131"x2Y2", 10d=0.148"x3", 16d=0.162"x3Y2"
6 Attach to 2x HF studs spaced no further than 16"oc, u.n.o.
7 Block all panel edges, and field nail at 12"oc, u.n.o. Do not pentrate nails past flush.
8 Abutting panel edges require a 2-2x (lamination connection same as WALL-TO-FLOOR), 3x, or greater stud
9 3x, 2-2x, or greater sill plate required.
Job Number Date
50601011 1/24/2006 SW
SHEAR FLOW CONNECTIONS WALL SHEATHING
SILL-TO- ROOF- TO-WALL, WALL -TO-FLOOR CALL CALL SHEATHING EDGE
FOUNDATION *3 FLOOR-TO-WALL, *5 OUT OUT *6 NAILS
FLOOR-TO-SILL *4 *2 *2 *5 *7
s/8"0 @ 60"oe or 16d slant @ 12"oe 16d @ 12"oe V:JI." ~6j w 7/16" 8d @ 6"oe
'12"0 @ 60"oe or A35 @ 36"oe ~.-.
i&'
5/8"0 @ 60"oe or A35 @ 24"oe 16d @ 10"oe lill~
'12"0 @ 48"oe
HOLDOWN SCHEDULE IIIII~~ s~u~~ ~L~I~S
1 Simpson or equal. Locate at end of SW, u.n.o. Foundation embedment and minimum end distance per
manufacturer (deepen foundation as required).
2 Use manufacturer recommended fasteners. Attach to 2-2x HF studs, u.n.o.
3 Connect to holdown with threaded rod and coupler as required.
Job Number Date
50601011 1/24/2006
HOLDOWN / STRAP FASTENERS FOUNDATION COMMENTS
*1 *2 ANCHOR *3
STHD14/14RJ 38/30-16d sinker N/A
STHD8/8RJ 24-16d sinker N/A
V 1.0
Section 1
SCH1
1-
Title:
Dsgnr:
Description:
Job#
Date: 9:08AM, 25 JAN 06
Scope:
Rev: 580004
User. KWOO06655. Ver 5.8.0, 1-Dec-2003
(c)1983-2003 ENERCALC Engineering Software
Page 1
50601011 d060124 eC.ecw:Calculations
Description 0-1
General Timber Beam
General Information
Code Ref: 1997/2001 NDS, 2000/2003 IBC, 2003 NFPA 5000. Base allowables are user defined
Section Name 4x8
Beam Width
Beam Depth
Member Type
3.500 in
7.250 in
Sawn
Load Dur. Factor
Beam End Fixity
1.000
Pin-Pin
Center Span
Left Cantilever
Right Cantilever
.Hem Fir, NO.2
Fb Base Allow
Fv Allow
Fc Allow
E
5.75 ft .... .Lu
ft .... .Lu
ft .... .Lu
850.0 psi
150.0 psi
405.0 psi
1,300.0 ksi
0.00 ft
0.00 ft
0.00 ft
I Full Length Uniform Loads
Center DL
Left Cantilever DL
Right Cantilever DL
128.40 #/ft
#/ft
#/ft
LL
LL
LL
513.30 #/ft
#/ft
#/ft
I
I Summary
.
Beam Design OK
Span= 5.75ft, Beam Width = 3.500in x Depth = 7.25in, Ends are Pin-Pin
Max Stress Ratio 0.939 : 1
Maximum Moment 2.7 k-ft
Allowable 2.8 k-ft
Max. Positive Moment 2.65 k-ft at 2.875 ft
Max. Negative Moment 0.00 k-ft at 0.000 ft
Max @ Left Support 0.00 k-ft
Max @ Right Support 0.00 k-ft
Max. Mallow 2.82
fb 1,037.93 psi tv
Fb 1,105.00 psi Fv
I Deflections
109.06 psi
150.00 psi
Reactions...
Left DL
Right DL
Maximum Shear * 1.5
Allowable
Shear:
Camber:
@ Left
@ Right
@ Left
@ Center
@Right
2.8 k
3.8 k
1.84k
1.84 k
0.000 in
0.033in
0.000 in
1.84k
1.84 k
I
Center Span... Dead Load
Deflection -0.022 in
...Location 2.875 ft
...Length/Detl 3,157.1
Camber ( using 1.5 · D.L. Detl ) ...
@ Center 0.033 in
@ Left 0.000 in
@ Right 0.000 in
0.37 k
0.37 k
Max
Max
Total Load
-0.109 in
2.875 ft
631.71
Left Cantilever...
Deflection
... Length/Detl
Right Cantilever...
Deflection
... Length/Detl
Section 2
Dead Load
0.000 in
0.0
0.000 in
0.0
Total Load
0.000 in
0.0
0.000 in
0.0
Title:
Dsgnr:
Description:
Job#
Date: 9:09AM, 25 JAN 06
Scope:
Rev: 580004
User: KW-0606655, Ver 5.8.0, 1-Dec-2003
(c)1983-2003 ENERCALC Engineering Software
Page 1
50601011 d060124 ec.ecw:Calculations
General Timber Beam
Description 1-1
General Information
Code Ref: 1997/2001 NDS, 2000/2003 IBC, 2003 NFPA 5000, Base allowables are user defined
Section Name 4x8
Beam Width
Beam Depth
Member Type
3,500 in
7,250 in
Sawn
Center Span
Left Cantilever
Right Cantilever
,Hem Fir, No,2
Fb Base Allow
Fv Allow
Fc Allow
E
Load Dur. Factor
Beam End Fixity
1.000
Pin-Pin
5.25 ft
ft
ft
'.., .Lu
.". .Lu
.... .Lu
0.00 ft
0.00 ft
0.00 ft
I Full Length Uniform Loads
Center DL
Left Cantilever DL
Right Cantilever DL
215.00 #/ft
#/ft
#/ft
LL
LL
LL
850.0 psi
150.0 psi
405.0 psi
1,300.0 ksi
358.00 #/ft
#/ft
#/ft
I
I Summary
I
Beam Design OK
Span= 5.25ft, Beam Width = 3.500in x Depth = 7.25in, Ends are Pin-Pin
Max Stress Ratio 0.699 : 1
Maximum Moment 2.0 k-ft
Allowable 2.8 k-ft
Max. Positive Moment 1.97 k-ft at 2.625 ft
Max. Negative Moment 0.00 k-ft at 5.250 ft
Max @ Left Support 0.00 k-ft
Max @ Right Support 0.00 k-ft
Max. Mallow 2.82
fb 772.63 psi tv
Fb 1,105.00 psi Fv
I Deflections
88.91 psi
150.00 psi
Reactions...
Left DL
Right DL
Maximum Shear * 1.5
Allowable
Shear:
Camber:
@ Left
@Right
@ Left
@ Center
@Right
2.3 k
3.8 k
1.50 k
1.50 k
0.000 in
0.038 in
0.000 in
1.50k
1.50 k
-.
Center Span... Dead Load
Deflection -0,025 in
...Location 2.625 ft
...Length/Defl 2,477.1
Camber ( using 1.5 . D.L. Detl ) ...
@ Center 0.038 in
@ Left 0.000 in
@ Right 0.000 in
Total Load
-0.068 in
2,625 ft
929.44
Left Cantilever...
Deflection
...Length/Deft
Right Cantilever...
Deflection
...Length/Defl
Section 2
0.56 k
0.56 k
Max
Max
Dead Load
0.000 in
0.0
0.000 in
0.0
Total Load
0.000 in
0.0
0.000 in
0.0
Title:
Dsgnr:
Description:
Job#
Date: 9:09AM, 25 JAN 06
Scope:
Rev: 580004
User: KW-0606655, Ver 5.8.0, 1-Oec-2003
(c)1983-2003 ENERCALC Engineering Software
Page 1
50601011 d060124 eC.ecw:Calculalions
Description 1-2
General Timber Beam
General Information
Code Ref: 1997/2001 NDS, 2000/2003 IBC, 2003 NFPA 5000. Base allowables are user defined
Section Name 6x10
Beam Width
Beam Depth
Member Type
5.500 in
9.500 in
Sawn
Load Dur. Factor
Beam End Fixity
1.000
Pin-Pin
Center Span
Left Cantilever
Right Cantilever
Douglas Fir - Larch, NO.2
Fb Base Allow
Fv Allow
Fc Allow
E
8.75 ft .... .Lu
ft .... .Lu
ft .... .Lu
875.0 psi
170.0 psi
625.0 psi
1,300.0 ksi
0.00 ft
0.00 ft
0.00 ft
Span= 8.75ft, Beam Width = 5.500in x Depth = 9.5in, Ends are Pin-Pin
Max Stress Ratio 0.909 : 1
Maximum Moment 5.5 k-ft
Allowable 6.0 k-ft
Max. Positive Moment 5.48 k-ft at 4.375 ft
Max. Negative Moment 0.00 k-ft at 0.000 ft
Max @ Left Support 0.00 k-ft
Max @ Right Support 0.00 k-ft
Max. Mallow 6.03
fb 795.43 psi tv
Fb 875.00 psi Fv
Deflections
I Full Length Uniform Loads
Center DL
Left Cantilever DL
Right Cantilever DL
Summary
Center Span... Dead Load
Deflection -0.056 in
...Location 4.375 ft
...Length/Defl 1,891.7
Camber ( using 1.5 * D.L. Deft) ...
@ Center 0.083 in
@ Left 0.000 in
@ Right 0.000 in
215.00 #/ft
#/ft
#/ft
LL
LL
LL
358.00 #/ft
#/ft
#/ft
Maximum Shear * 1.5
Allowable
Shear:
Camber:
@ Left
@Right
@ Left
@ Center
@Right
71.97 psi
170.00 psi
Reactions...
Left DL
Right DL
Max
Max
0.94 k
0.94 k
Total Load
-0.148 in
4.375 ft
709.79
Left Cantilever...
Deflection
...Length/Defl
Right Cantilever...
Deflection
... LengthlDefl
Dead Load
0.000 in
0.0
0.000 in
0.0
Section 2
I
Beam Design OK
3.8 k
8.9 k
2.51 k
2.51 k
0.000 in
0.083 in
0.000 in
2.51 k
2.51 k
Total Load
0.000 in
0.0
0.000 in
0.0
Title:
Dsgnr:
Description:
Scope:
Job#
Date: 9:09AM, 25 JAN 06
Page 1
50601011 d060124 eC.ecw:Calculalions
Rev: 580004
User. KW-0006655, Ver 5.6.0, 1-Dec-2003
(c)1963-2003 ENERCALC Engineering Software
General Timber Beam
Description 1-3
General Information
Code Ref: 1997/2001 NDS, 2000/2003 IBC, 2003 NFPA 5000. Base allowables are user defined
Section Name 5.125x9.0
Beam Width
Beam Depth
Member Type
Load Dur. Factor
Beam End Fixity
1.000
Pin-Pin
Center Span
Left Cantilever
Right Cantilever
GLB Douglas Fir, 24F - V4
Fb Base Allow 2,400.0 psi
Fv Allow 240.0 psi
Fc Allow 650.0 psi
E 1,800.0 ksi
5.125 in
9.000 in
GluLam
13.25 ft .... .Lu
ft .... .Lu
ft .... .Lu
I Full Length Uniform Loads
Center DL
Left Cantilever DL
Right Cantilever DL
0.00 ft
0.00 ft
0.00 ft
215.00 #/ft
#/ft
#/ft
LL
LL
LL
358.00 #/ft
#/ft
#/ft
.
I Summary
.
Beam Design OK
Span= 13.25ft, Beam Width = 5.125in x Depth = 9.in, Ends are Pin-Pin
Max Stress Ratio 0.909 : 1
Maximum Moment 12.6 k-ft
Allowable 13.8 k-ft
Max. Positive Moment 12.57 k-ft at 6.625 ft
Max. Negative Moment 0.00 k-ft at 13.250 ft
Max @ Left Support 0.00 k-ft
Max @ Right Support 0.00 k-ft
Max. Mallow 13.84
fb 2,180.97 psi tv
Fb 2,400.00 psi Fv
I Deflections
Maximum Shear * 1.5
Allowable
Shear:
Camber:
@ Left
@ Right
@ Left
@ Center
@Right
123.45 psi
240.00 psi
Reactions...
Left DL
Right DL
1.42 k
1.42 k
Max
Max
5.7 k
11.1 k
3.80k
3.80k
0.000 in
0.399 in
0.000 in
3.80k
3.80k
Total Load
-0.709 in
6.625 ft
224.24
Dead Load
0.000 in
0.0
I
Center Span... Dead Load
Deflection -0.266 in
...Location 6.625 ft
...Length/Defl 597.6
Camber ( using 1.5 . D.L. Deft) ...
@ Center 0.399 in
@ Left 0.000 in
@ Right 0.000 in
Left Cantilever...
Deflection
... Length/Detl
Right Cantilever..:
Deflection
...Length/Defl
0.000 in
0.0
Section 2
Total Load
0.000 in
0.0
0.000 in
0.0
Rev: 580004
User. KW-0006655, Ver 5.B.0. 1-Dec-2003
(c)19B3-2003 ENERCALC Engineering Software
Description 1-4
General Information
Title:
Dsgnr:
Description:
Scope:
General Timber Beam
Job#
Date: 9:08AM, 25 JAN 06
Page 1
s0601011 d060124 eC.ecw:Calculalions
Code Ref: 1997/2001 NOS, 2000/2003 IBC, 2003 NFPA 5000. Base allowables are user defined
Span= 6.33ft, Beam Width = 3.500in x Depth = 7.25in, Ends are Pin-Pin
Max Stress Ratio 0.885 : 1
Maximum Moment 2.9 k-ft
Allowable 3.2 k-ft
Max. Positive Moment 2.87 k-ft at 3.166 ft
Max. Negative Moment 0.00 k-ft at 6.333 ft
Max @ Left Support 0.00 k-ft
Max @ Right Support 0.00 k-ft
Max. Mallow 3.25
fb 1,124.27 psi tv
Fb 1,270.75 psi Fv
Deflections
Section Name 4x8
Beam Width
Beam Depth
Member Type
3.500 in
7.250 in
Sawn
Load Our. Factor
Beam End Fixity
1.150
Pin-Pin
I Full Length Uniform Loads
Center DL
Left Cantilever DL
Right Cantilever DL
Summary
Center Span... Dead Load
Deflection -0.054 in
...Location 3.166 ft
...Length/Defl 1,411.2
Camber ( using 1.5 . D.L. Detl ) ...
@ Center 0.081 in
@ Left 0.000 in
@ Right 0.000 in
Center Span
Left Cantilever
Right Cantilever
.Hem Fir, NO.2
Fb Base Allow
Fv Allow
Fc Allow
E
215.00 #/ft
#/ft
#/ft
107.26 psi
172.50 psi
Reactions...
Left DL
Right DL
Total Load
-0.144 in
3.166 ft
529.51
Section 2
6.33 ft .... .Lu
ft .... .Lu
ft .... .Lu
850.0 psi
150.0psi
405.0 psi
1,300.0 ksi
LL
LL
LL
358.00 #/ft
#/ft
#/ft
Maximum Shear * 1.5
Allowable
. Shear:
Camber:
0.68 k
0.68 k
Left Cantilever...
Deflection
...Length/Defl
Right Cantilever...
Deflection
... LengthlDefl
@ Left
@Right
@ Left
@ Center
@Right
Max
Max
Dead Load
0.000 in
0.0
0.000 in
0.0
0.00 ft
0.00 ft
0.00 ft
I
Beam Design OK
2.7 k
4.4 k
1.81 k
1.81 k
0.000 in
0.081 in
0.000 in
1.81 k
1.81 k
Total Load
0.000 in
0.0
0.000 in
0.0
I
Title:
Dsgnr:
Description:
Scope:
Job#
Date: 9:08AM, 25 JAN 06
Page 1
50601011 d060124 eC.ecw:Calculations
Rev: 580004
User. KW-0006655, Ver 5.8.0, 1-0ec-2OO3
(c)1983-2oo3 ENERCALC Enginaering Software
General Timber Beam
Description 1-5
General Information
Code Ref: 1997/2001 NOS, 2000/2003 IBC, 2003 NFPA 5000. Base allowables are user defined
Section Name 6x12
Beam Width
Beam Depth
Member Type
Center Span
Left Cantilever
Right Cantilever
Douglas Fir - Larch, NO.2
Fb Base Allow
Fv Allow
Fe Allow
E
5.500 in
11.500 in
Sawn
16.50ft .....Lu
ft .... .Lu
ft .... .Lu
875.0 psi
170.0 psi
625.0 psi
1,300.0 ksi
Load Our. Factor
Beam End Fixity
1.150
Pin-Pin
I Full Length Uniform Loads
Center DL
Left Cantilever DL
Right Cantilever DL
0.00 ft
0.00 ft
0.00 ft
82.50 #/ft
#/ft
#/ft
LL
LL
LL
137.50 #/ft
#/ft
#/ft
I
I Summary
I
Beam Design OK
Span= 16.50ft, Beam Width = 5.500in x Depth = 11.5in, Ends are Pin-Pin
Max Stress Ratio 0.736 : 1
Maximum Moment 7.5 k-ft
Allowable 10.2 k-ft
Max. Positive Moment 7.49 k-ft at 8.250 ft
Max. Negative Moment 0.00 k-ft at 16.500 ft
Max @ Left Support 0.00 k-ft
Max @ Right Support 0,00 k-ft
Max. Mallow 10.17
fb 741.10 psi tv
Fb 1,006.25 psi Fv
I Deflections
Maximum Shear * 1.5
Allowable
Shear:
Camber:
@ Left
@ Right
@ Left
@ Center
@Right
43.04 psi
195.50 psi
Reactions...
Left DL
Right DL
0.68 k
0.68 k
Max
Max
2.7 k
12.4 k
1.81 k
1.81 k
0.000 in
0.228 in
0.000 in
1.81 k
1.81 k
I
Total Load
-0.405 in
8.250 ft
489.05
Dead Load
0.000 in
0.0
Total Load
0.000 in
0.0
Center Span... Dead Load
Deflection -0.152 in
...Location 8.250 ft
...Length/Defl 1,304.1
Camber ( using 1.5 * D.L. Def! ) ...
@ Center 0.228 in
@ Left 0.000 in
@ Right 0.000 in
Left Cantilever...
Deflection
...Length/Defl
Right Cantilever...
Deflection
... Length/Defl
0.000 in
0.0
Section 2
0.000 in
0.0