HomeMy WebLinkAbout2415 W 10th St Technical - BuildingTECIIMCAT
5 4\ e Ce
Date 01/23/07 LATERAL ENGINEERING FOR HILINE HOMES
By I E ReeD. P E
PROJECT INFORMATION AND CRITERIA
OWNER/ADDRESS
TAX PARCEL NUMBER/SITE ADDRESS
Reep Engineering Consulting Inc
I E (Gene) Reep P E
8205 Sunset Lane, Pasco WA 99301
Phone (509) 547- 9087/Cell 366 -2869
E Mail reepengineeringicharter.net
Washington License No 14364
Idaho License No 8908
ICC No 465600
TYPE OF DESIGN
EXTENT OF DESIGN
REFERENCE CODES STANDARDS
Reep Engineering Consulting, Inc.
PLAN 1883 [30 -PSF SNOW, 120 -MPH, EXP C, SDC D2]
1 PROJECT INFORMATION
Brian Mindy Crawford
1206 Georgians Street
Port Anaeles. Washington 98362
See permit application
PLAN NUMBER HiLine Homes PIanz,1883
2 STRUCTURAL DESIGNER INFORMATION
Page 1 of 5
Note The above stamp applies to the structural
members and assemblies described in the following
calculations only and is valid with a copied or wet
stamp intended for reuse by HiLine Homes. Inc.
3 SCOPE OF DESIGN
Lateral engineering analysis of wind and
seismic forces on building
Structural specifications for residence and
two -car garage
2003 International Building Code (IBC)
2003 International Residential Code (IRC)
2001 National Design Specification (NDS)
American Society of Civil Engineers
(ASCE) Standard 7 -02
American Society for Testing Material
(ASTM) Standard A307
American Plywood Association (APA)
Diaphragms And Shear Walls Design/
Construction Guide November 2004
Date 01/23/07
By I E Reep, P E
FLAT ROOF SNOW LOAD (LIVE LOAM.
ROOF DEAD LOAD.
EXTERIOR WALL DEAD LOAD.
INTERIOR WALL DEAD LOAD.
SEISMIC DESIGN CATEGORY.
BASIC WIND SPEED.
WIND EXPOSURE FACTOR.
ALLOWABLE SOIL PRESSURE.
MATERIAL SPECIFICATIONS
Project Information And Criteria
Description
Specifications And Design Criteria
Engineering Calculations
Reep Engineering Consulting, Inc.
LATERAL ENGINEERING FOR HILINE HOMES
PLAN 1883 [30 -PSF SNOW 120 -MPH, EXP C, SDC D2]
4 DESIGN CRITERIA
I: Rnnf 30 -osf maximum.
DRnnf 15 -osf.
Dwau 15 -qsf.
Dwau 10 -qsf.
SDC 2.
120 -moh
1.500 -osf
Framing Material No 2 Hem -Fir minimum
Wood Structural Panels APA Rated
10d Nails Diameter 0 148 -in
8d Nails Diameter 0 131 -in
Concrete Strength 28 -days 2 500 -psi
Anchor Bolts ASTM A307 Steel
CONTENTS
TABLES IN ATTACHMENT
Table A. Plan 1883 Structural Specifications Allowable Loads
Table B Wind Design Criteria
Table C Seismic Design Criteria
Table D Wind Loads
Table E Minimum Wind Loads
Table F Seismic Loads
Table G Controlling Shear Loads
Table H Wind Shear Wall Loads
Table I Seismic Shear Wall Loads
Table J Roof Diaphragm Load Calculations
Page 2 of 5
Page 1
Page 3
Page 3
Page 3
Page A -1
Page A -2
Page A -3
Page A -4
Page A -5
Page A -6
Page A -8
Page A -9
Page A -10
Page A -11
Reep Engineering Consulting, Inc.
Date 01/23/07 LATERAL ENGINEERING FOR HILINE HOMES
By I E Reep, P E
PLAN 1883 [30 -PSF SNOW, 120 -MPH, EXP C, SDC D21
Page 3 of 5
DESCRIPTION
This report provides engineering calculations and structural design specifications for HiLine
Homes Plan 1883 The one -story house is 1,883-sf in area plus a two -car garage Design
specifications are provided in Table A and wind and seismic design criteria, including
calculations, are included in Tables B and C, respectively Lateral engineering calculations
are provided in Tables D through J Calculations are performed using Microsoft Excel linked
worksheets
SPECIFICATIONS AND DESIGN CRITERIA
Design criteria are based on the 2003 International Building Code (IBC) 2001 National
Design Specification and the American Society of Civil Engineers (ASCE) Standard 7 -02
Table A. Specifications of Structural Components And Fasteners
Specifications are provided for size and spacing of anchor bolts shear wall hold -downs
shear wall sheathing and nailing shear transfer and roof framing Structural
specifications are identified with respect to Wall Lines, which are shown on plan sheet S2
Table B Wind Design Criteria
Wind design criteria are based on a 1 -mph basic wind speed and Exposure Factor C
The simplified method per IBC Section 1609 6 is used for determining wind loads
Overturning moments due to wind forces are less than allowable restorative dead load
moments as shown in Table F Uplift loads for roof tributaries are calculated assuming
the maximum uplift of 24 1 -psf in the roof overhang Zone E applies to the tributary area
Table C Seismic Design Criteria
Seismic design loads are based on default Site Classification D per IBC Section 1615 1 1
for a maximum flat roof snow load (Pf) of 30 -psf The Equivalent Lateral Force Procedure
of the American Society of Civil Engineers (ASCE) Standard 7 -02 Section 9 5 5 is used
for calculating seismic forces
ENGINEERING CALCULATIONS
Engineering calculations are documented in Tables D through J based on specifications in
Tables B and C These tables provide the following information
Table D Wind Loads
Wind loads and overturning moments are calculated in Table D for two orthogonal
directions transverse and longitudinal Calculated values are linked to Table G,
Controlling Shear Loads to determine if wind, minimum wind or seismic loads control
design of lateral restraint. Unit uplift on the building is also calculated for both the
transverse and longitudinal directions Overturning loads due to design base winds are
calculated with a link to Table F Seismic Loads where they are compared to seismic and
building restoring loads
Date 01/23/07
BY I E Reep, P E
Reep Engineering Consulting, Inc.
LATERAL ENGINEERING FOR HILINE HOMES
PLAN 1883 [30 -PSF SNOW, 120 -MPH, EXP C, SDC D2]
Page 4 of 5
Table E Minimum Wind
Minimum wind loads are provided in Table E based on horizontal pressures equal to 10
psf and vertical pressures equal to zero per IBC Section 1609.2 1 1 Calculations are
based on the simplified wind Toad method of IBC Section 1609 6 Calculations are
performed for both transverse and longitudinal directions and linked to Table G for
comparison to wind and seismic Toads
Tables F Seismic Loads
Table F provides seismic shear Toads for a maximum flat roof snow load 30 -psf Flat roof
snow loads are calculated in Table J to determine the added effect of flat roof snow loads
greater than 30 -psf per IBC Section 1716 5 1 Calculations are based on seismic design
criteria in Table C and the Lateral Force Procedure method of ASCE Standard 7 -02
Section 9 5 5 This procedure is limited to buildings of light frame construction not
exceeding three stories in height for SDC D and higher Seismic Toads are calculated for
transverse and longitudinal directions Overturning moments are calculated in the table
and compared to allowable restoring dead load moments Although not required for one
story buildings, story drift and P -Delta effects are analyzed in this table per ASCE 7 -02
Section 9 5 5 7 to verify building stability due to earthquake forces Both story drift and
building stability are well below allowable limits Overturning loads due to design base
seismic forces are calculated and compared to restoring loads The building is stable with
respect to overturning
Table G Controlling Shear Loads
Table G provides a summary of seismic shear Toads Shear load values from Tables D
E and F are compared to determine controlling lateral forces The controlling values are
linked to Tables H and I for calculating maximum shear wall loads for wind and seismic
forces, respectively
Table H Wind Shear Loads
Table H provides transverse and longitudinal Toads on the building structure including wall
length, applied unit shear, shear wall length, resistive unit shear unit drag load unit dead
load on shear walls, and hold -down loads for the various shear wall lengths based on
controlling wind shear loads from Table I Allowable dead loads are based on an
allowance of 0 66 of the calculated dead load per IBC Section 1609 3 for load
combinations using the allowable stress design method of analysis of wind loads
Table I Seismic Shear Loads
Table I provides transverse and longitudinal loads on the building structure including wall
length, applied unit shear, shear wall length, resistive unit shear, unit drag load, unit dead
load on shear walls, and hold -down loads for the various shear wall lengths based on
seismic shear loads from Table G Allowable dead loads are based on an allowance of
0 60 of the calculated dead load per ASCE Standard 7 -02, Section 2 4 1 for load
combinations using the allowable stress design method of analysis of seismic loads
Date 01/23/07
By I E Reep, P E
Reep Engineering Consulting Inc.
LATERAL ENGINEERING FOR HILINE HOMES
PLAN 1883 [30 -PSF SNOW, 120 -MPH, EXP C, SDC D2]
Page 5 of 5
Table J Roof Diaphragm Snow Load Calculations
Table J provides roof diaphragm load calculations for determining diaphragm shear per
IBC 1620 4 3 for seismic loads and comparing these loads with wind and minimum wind
loads from Table H In addition, shear wall and diaphragm deflection are calculated to
confirm that the diaphragm is flexible that is the roof diaphragm to shear wall ratio is
greater than 2 0 per ASCE 7 -02, Section 9 5.2 3 1 Strength level seismic unit shear
values are used to calculate deflections Calculations are based on American Plywood
Association (APA) Report T2002 -17, Estimating Wood Structural Panel Diaphragm and
Shear Wall Deflection April 17, 2002 Uplift due to design base wind loads are calculated
assuming the roof experiences a maximum uplift pressure from Table B for `Roof Wind
Zone F Pressure" Allowable roof dead loads plus truss connections exceed uplift by an
acceptable margin
Reep Engineering Consulting, Inc Page A -1
Table A. Plan 1883 Structural Specifications Allowable Loads (6 sheets)
Summary structural specifications are provided below Details for standard specifications and
calculation of allowable loads are provided in at the end of this table
Explanation of Wall Lines
Shear walls and structural specifications are identified with Wall Lines Lettered Wall Lines are
generally identified from front to rear of the building and numbered Wall Lines start at the left
and continue to the right (standard plan) For reversed plans, Wall Lines remain the same
except numbered Wall Lines start at plan right.
SUMMARY STRUCTURAL SPECIFICATIONS
Foundation Anchoring Specifications (All Wall Lines)
Maximum applied shear per Tables H or 1 (Ib) I 2,855
Maximum anchor bolt Load 72 -in o c minimum 2 anchors per mudsill (Ib) 1 714
Allowable anchor bolt load for 1 /2 -in dia A307 bolts with 7 -in embedment (Ib) 1 912
Install 1 /2 -in dia ASTM A307 anchor bolts 72 -in o c per standard specification
Shear Wall Hold -Down Specifications
Wall Line A (Garage Portals)
Maximum overturning tension load per Tables H or 1 (Ib) 1 1 417
Where shown on the plan install Simpson STHD8 Strap Tie Holdowns per standard specification
Allowable tension load for Simpson STHD8 Strap Ties is 2,385 -Ib 1 2,385
Wall Line D (Interior OSB Shear Wall)
Maximum overturning tension load per Tables H or I (Ib) 1 696
Fasten each end of OSB shear wall bottom plate to top plate of pony wall below with 1 /2 -in dia
ASTM A307 bolts or threaded rod with minimum 2X2X3/16 -in flat washers under bolt head /nuts
Fasten OSB to crawl pony wall per standard shear wall sheathing specification
Allowable overturning load for minimum 8 -ft long crawl level pony wall sheathed with 1 054
OSB and fastened with 8d nails 6 -in o c 1,054 -Ib
Shear Wall Sheathing Specifications
All Exterior Wall Lines
Maximum resistive unit shear load per Tables H or I (Ib /ft) 1 289
Apply 7/16 -in OSB wood structural panels to Hem -Fir framing members with 8d nails 6 -in o c
per standard specification
Allowable shear per standard specification (0 50)(0 93)(785) 365 -Ib /ft. J 365
Wall Line C (Garage GWB Shear Wall)
Maximum resistive unit shear for seismic loads per Table 1 (Ib /ft) 1 122
Fasten Simpson WB106 Wall Bracing and 1 /2 -in GWB drywall panels to both sides of Hem -Fir
framing members per standard specification
Allowable shear for seismic loads per standard specification 172 -lb /ft. 1 172
Revised 01/03/07 Lateral Specs Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 1
Reep Engineering Consulting, Inc Page A -1
Table A. Plan 1883 Structural Specifications Allowable Loads (6 sheets)
Wall Line D (Interior OSB Shear Wall)
Maximum resistive unit shear for seismic loads per Table 1 (Ib /ft)
Apply 7/16 -in OSB wood structural panels to Hem -Fir framing members with 8d nails 6 -in o c
per standard specification
Sheath pony wall below shear wall with 7/16 -in OSB
nails 6 -in o c on edges and 12 -in o c. in the field
Allowable shear per standard specification for wind loads (0 50)(0 93)(785) 365 -lb /ft. j
Shear Transfer Specifications
All Wall Lines
Fasten double top plates together with 2 -10d nails 16 -in o c and 6 -in o c at splices Overlap
splices 4 -ft. minimum Fasten OSB wall sheathing between shear wall segments at same
fastener spacing as on shear walls
Wall Lines A, B E (Gables)
Maximum applied unit shear per Tables H or 1 (Ib)
Fasten gable -end trusses to double top plates with 2 -10d toenails 16 -in o c
Allowable load for (0 83)(2)(12/16)(1 6)(84) 203 -lb /ft.
Wall Lines 1 2 (Eaves)
Maximum applied unit shear per Tables H or 1 (Ib)
See Roof Framing Specification for truss connections
Fasten per Roof Framing Specification for truss connections
Wall Line C (Roof Truss -to -Shear Wall)
Maximum applied unit shear per Tables H or 1 (Ib /ft)
Install 2X blocking laid flat on top of wall against truss bottom chord Fasten blocking to top plate
and truss bottom chord with 2 -10d common nails 16 -in o c When truss bottom chord rests on
wall top plate fasten truss to wall plates with 2 -10d toenails 16 -in o c
Allowable load for 2 -10d toenails 16 -in o c (2)(12/16)(1 6)(102) 245 -lb /ft
Wall Line D (Roof Truss -to -Shear Wall)
Maximum applied shear per Tables H or I (lb /ft)
Install 2X6 ladder blocking at 5 places on shear wall per standard specification
Allowable Toad for 5 ladder blocks (5)(606) 3,035 -Ib
Roof Diaphragm Framing Specifications
Roof Sheathing
Maximum applied unit shear per Table J (lb /ft)
Install 7/16 -in unblocked wood structural panels per IBC Case 1
o c on supported edges and 12 -in o c in the field
Basic allowable unit shear for wind loads 645 -lb /ft per NDS Table 4 2B for 7/16 -in
unblocked panel diaphragms Adjustment Factor (AF) for ASD 0 5 Adjusted
allowable unit shear (0 50)(645) 323 -Ib /ft.
Truss Blocking Boundary Nailing
Fasten 2X4 vent blocking in each truss bay with 1 -10d toenail into truss each side Fasten roof
diaphragm to blocking with 8d nails 6 -in o c
Fasten OSB to framing members with 8d
Fasten with 8 -d nails 6 -in
Revised 01/03/07 Lateral Specs Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 2
169
365
79
203
67
381
159
245
2 855
3,035
127
323
Reep Engineering Consulting, Inc Page A -1
Table A. Plan 1883 Structural Specifications Allowable Loads (6 sheets)
Truss Connections
Maximum applied unit shear per Tables G Q/ (lb/ft) 1 139
Fasten truss tails to top plates with 2 -10 toenails and a Simpson H2 5A or H1 Seismic
Hurricane Tie fastened to truss and top plates per manufactures instructions (see sheet S3
Roof Framing Plan)
Allowable load for 2 -10d common toenails (2)(0 83)(1 6)(102) 271-lb per truss end
Allowable load for H2 5A or H1 Seismic HurricaneTies 110-lb per truss end for Hem- 381
Fir Total allowable load per truss end 271 110 381-lb per truss end 381-lb/ft
(H2 5A ties control)
Truss Chord Splice Nailing
Maximum applied chord tension load per Tables J, C T M/b v,L /b8 (lb) 1 1,631
Fasten exterior wall top plate splices together with 10d nails 4 -in o c Minimum splice length
48 -in
Allowable chord splice tension load for 10d nails 4 -in o c 1 2 122
Standard Structural Specifications Allowable Loads
Foundation .Anchor Bolts
Basic allowable single shear for fastening Hem -Fir framing to concrete with 1/2-in bolts
570-lb per NDS Table 11E Adjustment for 10- minute wind /seismic loads 1 6 NDS 912
Table 2 3.2 Allowable load (1 6)(570) 912-lb
Basic allowable single shear for fastening Hem -Fir framing to concrete with 1/2-inX8 5-
in long Simpson Wedge -All wedge anchors in 2,500 -psi concrete with 4 5 -in 938
embedment 1 763-lb Adjustments for no special inspection 0 50 for 3 -in edge
distance 0 80, and for wind /seismic loads 1 33 Allowable load
Basic allowable single shear for fastening Hem -Fir framing to concrete with 1 /2 -in
Simpson Titen HD anchors in 2,500 -psi concrete with 4.25 -in embedment 2,210 -lb 1 176
Adjustments for 3 -in edge distance 0 44 and for 10- minute wind /seismic loads 1 33
Allowable load (0 40)(1 33)(2,210) 1,176 -lb
i g oldDotins.. o
Simpson STHD8 /10 Strap Ties
Install Simpson STHD8 Strap Tie Holdowns in 2,500 -psi concrete and 6 -in minimum stem wall
Allowable tension load for Simpson STHD8 Strap Ties is 2,385 -lb for 2 500 -psi 2 385
concrete
Install Simpson STHD10 Strap Tie Holdowns in 2,500 -psi concrete and 6 -in minimum stem wall
Allowable tension load for Simpson STHD10 Strap Ties is 3 730-lb for 2 500 -psi 3 730
concrete
Revised 01/03/07 Lateral Specs Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 3
Reep Engineering Consulting, Inc Page A -1
Table A. Plan 1883 Structural Specifications Allowable Loads (6 sheets)
Simpson LTT20B /HTT16 Strap Ties
Install Simpson LTT2OB Tension Ties fastened to 3 -in framing with 10 -16d nails Fasten
Allowable tension load for Simpson LTT2OB Tension Ties is 1 750-lb (controls) for 2 500 1 750
psi concrete 1,750 -lb
Basic allowable tension load for 1 /2- inX8 -in long Simpson Titen HD anchors embeded
4 125 -in into 2,500 -psi concrete 2,207 -lb Adjustments are 0 50 for no special 1,218
inspection 0 83 for 3 -in edge distance, and 1 33 wind /seismic Toads Allowable load
(0 50)(0 83)(1 33)(2,207) 1,218 -lb (controls)
Basic allowable tension load for 1 /2 -inX8 5in long Simpson Wedge -All anchors
embeded 4 5 -in into 2 500 -psi concrete 2 045-lb Adjustments are 0 50 for no special 1 088
inspection, 0 80 for 3 -in edge distance, and 1 33 for wind /seismic loads Allowable load
(0 50)(0 80)(1 33)(2,045) 1,088 -lb (controls)
Shear Wall Nailing Into Mudsill
Fasten OSB panels to mudsill with 8d nails a 6 -in o c
Basic allowable single shear load for 8d nails and Hem -Fir framing 73-lb per NDS
Table 11N Adjustment for 10- minute wind /seismic Toads 1 6 per NDS Table 2 3.2
Allowable shear load (1 6)(73) 117 -Ib /nail Allowable shear wall overturning load for 527
4 -ft panels fastened with two rows of 8d nails 6 -in o c 1/2(48/6 1)(117) 527-lb
(controls)
Fasten OSB panels to both mudsill and wall bottom plate with 8d nails 6 -in o c. Fasten
bottom plate at each end of shear wall to foundation with 1 /2 -in dia.X 8 5 -in long Simpson
Wedge Anchors (or equal) with 3X3X3/16 -in flat washers at locations shown on Sheets S1 /S2
Embed anchor 4 125 -in into minimum 2 500 -psi concrete as specified above
Allowable shear wall overturning load for 4 -ft panels fastened with two rows of 8d nails 1 054
6 -in o c 1/2 (2)(48/6 1)(117) 1,054 -lb (controls)
Nails (Per NDS Tables 11N and 2.3.2
Single shear for 8d common (0 131 -in) with 1 5 -in thickness Hem -Fir side members
Basic allowable shear for 8d common nails 84-lb Adjustment for 10- minute 134
wind /seismic loads 1 6 Allowable shear load (1 6)(84) 134-lb
Single shear fors Od common (0 148 -in) with 1 5 -in thickness Hem -Fir side members
Basic allowable shear for 10d common nails 102-lb Adjustment for 10- minute 163
wind /seismic Toads 1 6 Allowable shear Toad (1 6)(102) 163-lb
Single shear forl0d common (0 148 -in) with 1 5 -in thickness Hem -Fir side members
Basic allowable shear for 10d common nails 102-lb Adjustment for 10- minute 163
wind /seismic Toads 1 6 Allowable shear Toad (1 6)(102) 163-lb
Single shear for 10d common toenails (0 148 -in) with 1 5 -in thickness Hem -Fir side 135
members (0 83)(163) 135-lb
Revised 01/03/07 Lateral Specs Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 4
Reep Engineering Consulting, Inc. Page A -1
Table A. Plan 1883 Structural Specifications Allowable Loads (6 sheets)
Shear UVa f Sheathing'
OSB Shear Wall Panels Per NDS Table 4.3A)
Basic allowable shear for wind loads 785-lb/ft per NDS Table 4 3A for 8d nails 6-
in o c on edges, 12 -in o c in the field framing 16 -in o c per Note b Adjustments
0 50 for ASD and 0 93 for Hem -Fir framing Allowable shear (0 50)(0 93)(785) 365-
lb/ft.
Basic allowable shear for wind loads 1,205-lb/ft per NDS Table 4 3A for 8d nails
staggered 4 -in o.c. on edges 12 -in o c in the field framing 16 -in o c per Note 560
b Framing on panel edges is 3 -in nominal Adjustments are 0 50 for ASD and 0 93 for
Hem -Fir framing Allowable shear (0 50)(0 93)(1,205) 560-lb/ft.
Basic allowable shear for seismic loads 560-lb/ft per NDS Table 4 3A for framing
16 -in o c per Note b Adjustments are 0 50 for ASD and 0 93 for Hem -Fir framing 260
Allowable shear (0 50)(0 93)(560) 260-lb/ft.
Basic allowable shear for seismic loads 860-lb/ft per NDS Table 4 3A for 8d nails
staggered 4 -in o c on edges 12 -in o c in the field, framing 16 -in o c per Note 400
b Framing on panel edges is 3 -in nominal Adjustments are 0 50 for ASD 0 93 for
Hem -Fir framing Allowable shear (0 50)(0 93)(860) 400-lb/ft.
GWB Shear Wall Panels Per NDS Table 4.3B)
Fasten Simpson WB106 Wall Bracing metal straps with 2 -16d nail to top and bottom wall plates
and 1 -8d nail to each stud per manufacturers instructions Straps may be placed on wall in an X
or V fashion Fasten 1 /2 -in GWB panels to both sides of wall with No 6 X 1.25 -in long Type S or
W drywall screws 4 -in o.c. on edges and in the field with all edges blocked Minimum
framing material is Hem -Fir with maximum spacing of studs 16 -in o c
Basic allowable unit shear for wind loads 300-lb/ft. Adjustment Factor (AF) for ASD
is 0 50 and AF for Hem -Fir framing 0 93 Allowable shear (2)(0 50)(0 93)(300) 279
279-lb/ft.
Basic allowable unit shear for seismic loads without flat metal strap bracing 300
Ib/ft. Adjustments are for ASD is 0 50 0 93 for Hem -Fir framing and 0 30 for seismic 86
response modification coefficient (R =2) using GWB sheathing per IBC Table 1617 7.2
(2/6 5 0 30) Allowable shear (2)(0 50)(0 93)(0 30)(300) 86-lb/ft.
Basic allowable unit shear for seismic loads with flat metal strap bracing 300-lb/ft
for framing 16 -in o c per Note b Adjustment factors for ASD is 0 50, Hem -Fir
framing 0 93, and seismic response modification coefficient (R) GWB sheathing per 172
IBC Table 1617 7.2 4/6 5 0 62 Allowable shear (2)(0 50)(0 93)(0 62)(300) 172
Ib/ft.
365
Revised 01/03/07 Lateral Specs Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 5
Reep Engineering Consulting, Inc Page A -1
Table A. Plan 1883 Structural Specifications Allowable Loads (6 sheets)
.Shear Transfer
Nails
Basic allowable Toad for 10d common nails fastened with 1 5 -in side members 102-lb
per NDS Table 11N Adjustment for 10- minute wind /seismic loads 1 6 Allowable 163
load (1 6)(102) 163-lb
Basic allowable load for 8d common nails fastened to minimum 3 /4 -in side members
73-lb per NDS Table 11N Adjustment for 10- minute wind /seismic loads 1 6
Allowable load (1 6)(73) 117-lb
Toenails
Allowable load for 10d common toenails ca 12 -in o c (0 83)(1 6)(102) 135-1b/ft. 1 135
Allowable load for 2 -10d common toenails 16 -in o c (0 83)(2)(12/16)(1 6)(102) 203
203-lb/ft.
117
Ladder Blocking
Place 2X framing members laid flat on wall perpendicular to truss bottom chords at
approximately equal spacing Fasten blocking to top plate with 4 -10d nails Fasten each end of
blocking to truss bottom chord with 2 -10d nails
Allowable shear load per ladder block (4)(0 93)(1 6)(102) 607-lb 1 607
Revised 01/03/07 Lateral Specs Plan 1883 -07 Lateral -30 Snow 120 mph, Exp C, SDC D2.xls 3/7/2007 6
Reep Engineering Consulting, Inc
Table B Wind Design Criteria
Description I Value 1 Description
Basic Wind Speed Va (mph)
Simplified Method per IBC Section 1609 6
Importance Factor l
Roof Slope (6/12)
Mean Roof Height (ft)
Exposure Height Factor (Exposure C)
Horizontal Pressures (psf)
Wall Zone A Pressure
Wall Zone C Pressure
Roof Zone B Pressure
Roof Zone D Pressure
120 Vertical Pressures (psf)
Yes1Roof Zone E Pressure
1 00 Roof Zone F Pressure
0 50 Roof Zone G Pressure
12 8 Roof Zone H Pressure
1.21 Roof Overhang Zone E Pressure
Roof Overhang Zone G Pressure
34 7IRoof Overhang Zone F Pressure
25 OIRoof Overhang Zone H Pressure
5 51
581
Page A -2
I Value
15 4
20 9
11 1
16 9
28 7
24 3
20 9
16 9
Note. Plus and minus signs signify wind pressures acting toward and away from the surfaces, respectively per ASCE
Standard 7 -02
Building Measurement Values For Use in Tables E And F
Left Wall Length (ft) 1 40 O1Front Wall Length (ft) 1 64 0
Center Wall Length (ft) 1 0 OlCenter Wall Length (ft) 1 0 0
Right Wall Length (ft) 1 40 OIRear Wall Length (ft) 1 64 0
Building Wall Height (ft) 1 7 8lRoof Height (ft) 1 10 0
Transverse Building Zone Measurements I Longitudinal Building Zone Measurements
Horizontal Windforce Loading 1 Horizontal Windforce Loading
Transverse Wall Zone A B Width (ft) 1 8 OlLongitudinal Wall Zone A Width (ft) 8 0
Transverse Wall Zone C D Width (ft) 1 56 OlLongitudinal Wall Zone C Width (ft) 32 0
Transverse Wall Zones A C Height (ft) 1 7 8lLongitudinal Wall Zone A Height (ft) 9 8
Transverse Roof Zones B D Height (ft) 1 7 8lLongitudinal Wall Zone C Height (ft) 14 8
Vertical Windforce Loading 1 Vertical Windforce Loading
Transverse Roof Zones E F Width (ft) I 8 OlLongitudinal Roof Zones E F Width (ft) 1 8 0
Transverse Roof Zones G H Width (ft) 56 O1Longitudinal Roof Zones G H Width (ft) 1 32 0
Transverse Roof Zones E F Length (ft) 1 20 OlLongitudinal Roof Zones E G Length (ft)1 0 0
Transverse Roof Zones G H Width (ft) 1 20 OiLongitudinal Roof Zones F H Length (ft)1 0 0
Note Width is measured perpendicular the wind direction and length parallel to the wind direction
Revised 11/09/06 Wind Criteria Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007
Table C
Description
Building Occupancy Category
Seismic Use Group
Seismic Importance Factor I
Default Seismic Site Classification
Seismic Design Category
Response Modification Coefficient, R
Mean Building Height, h (ft)
Building Period Coefficient: C (sec)
Building Period, T C,h /4 (sec)
Site Short Period Acceleration, SDS (g)
MCE Long Period Acceleration, S (g)
Site Coefficient, Fâ
Site Long Period Acceleration, S (g)
T 0.2S /S (sec)
I /sec)
is rerioa i o 1 <1= i s'
is uesign apectrai response, J JDS
Equivalent Lateral Force Procedure
Seismic Design Coefficient: C S /R
Maximum Unit Shear vmax (lb/ft)
Story Base Shear, V ston (lb)
Story Shear Ratio rmax 10v
Base Story Area AB (sf)
Square Root of Base Story Area AB (ft)
Reduncany Factor, p 2 20 /r,â,,,(A /2
Minimum Redunancy Factor, p
SL Seismic Shear E pQ 0.2S
Seismic Load Combination Factor for ASD
ASD Base Shear. VASD 0 7VSL
Maximum Flat Roof Snow Load Pf (psf)
Reep Engineering Consulting, Inc
Seismic Design Criteria
Reference /Calculation
ASCE Standard 7 -02, Table 1 -1
ASCE Standard 7 -02, Table 9 1 3
ASCE Standard 7 -02, Table 9 1 4
IBC Section 1615 1 1
IRC Table 301.2.2 1 1
IBC Table 1617 6.2
Per Plan
ASCE Standard 7 -02, Table 9 5 5 3.2
ASCE Standard 7 -02, Section 9 5 5 3 2
IRC Table R301 2.2 1 1, for SDC D2
IBC Figure 1615(2) for Western Areas
IBC Table 1615 1 2(2) for S 0 50
S FâS per IBC Equation 16 -38
IBC Section 1615 1 4
IBC Section 1615 1 4
IBC Section 1615 1 4
IBC Section 1615 1 4
ASCE 7 -02 Section 9 5 5
ASCE 7 -02 Equation 9 5 5 2 1 -1
Calculation per Table 1
Calculation per Table G
ASCE Standard 7 -02, Section 9 5 2 4 2
Plans
Calculation
ASCE Standard 7 -02, Section 9 5 2 4.2
ASCE Standard 7 -02, Section 9 5 2 4 2
ASCE Standard 7 -02, Section 2 4 1
Calculation
Building Department
Page A -3
Value
I I
10
D
D2
65
130
0 02
0 137
1 170
0 500
15
0 750
0 128
0 641
Yes
Yes
Yes
0 180
167
7,869
021
2,367
48 7
0 07
1 00
0 180
0 700
0 126
30 0
Revised 11/14/06 Seismic Criteria Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007
Zone
Transverse Wall Zone A 1
Transverse Wall Zone C 1
Transverse Roof Zone B 1
Transverse Roof Zone DI
Transverse Wall Zone E 1
Transverse Wall Zone F 1
Transverse Wall Zone G 1
Transverse Wall Zone H 1
Roof Overhang Zone E 1
Roof Overhang Zone F 1
Roof Overhang Zone G 1
Roof Overhang Zone H 1
Longitudinal Wall Zone E1
Longitudinal Wall Zone F1
Longitudinal Wall Zone d
Longitudinal Wall Zone H
Roof Overhang Zone E 1
Roof Overhang Zone F 1
Roof Overhang Zone G 1
Roof Overhang Zone H 1
Reep Engineering_ Consulting, Inc
Table D Wind Loads
Wind Zone Zone Zone
Pressure Width Ht. /Leng Area
(psf) (ft) (ft) (sf)
Horizontal (Transverse) Wind Loads
3471 801 781 621
2501 5601 781 4346
551 801 1001 800
581 5601 1001 5600
Transverse Base Shear /Moment
Vertical (Transverse) Wind Loads
-154 801 200 1600
20 9 8 01 20 0 160 0
-11 1 56 01 20 0 1,120 0
169 5601 200 1,1200
287 801 13 106
243 801 13 106
-209 5601 131 745
-169 5601 131 745
Total Uplift/Overturning Moment on Building
Unit Uplift on Building (psf)
Horizontal (Longitudinal) Wind Loads
Longitudinal Wall Zone Al 34 71 8 01 9 81 78 1
Longitudinal Wall Zone d 25 01 32 01 14 81 472 3
Longitudinal Base Shear
Vertical (Longitudinal) Wind Loads
-1541 801 2501 2000
-20 91 8 01 25 01 200 0
-11 11 32 01 25 01 800 0
16 91 32 01 25 01 800 0
28 71 8 01 1 01 8 0
-24 31 8 01 1 01 8 0
20 91 32 01 1 01 32 0
1691 3201 101 320
Zone
Force
(lb)
2,153
10,882
443
3,236
10,197
-2,466
3,352
12,406
18,878
305
-259
1,560
-1,255
40,480
17 1
2,707
11,828
7,268
-3,082
-4,190
8,861
13,484
-229
-195
670
539
31,251
13.2
Moment
Arm
Page A -4
Moment
(ft) (ft-lb)
3 9 8,352
3 9 42,223
7 8 3,438
7 8 25,113
79,126
30 0 73,971
10 0 33,518
30 0 372,165
10 0 188,779
40 7 12,398
-0 7 -172
40 7 63,450
-0 7 -837
822,399
Total Uplift/Overturning Moment on Building
Unit Uplift on Building (psf)I
Note Plus and minus signs signify wind pressures acting toward and away from the surfaces
resnectively ner ASCF Standard 7 -02
Revised 11/09/06 Wind Loads Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007
Zone
Transverse Wall Zone A
Transverse Wall Zone C
Transverse Roof Zone. B1
Transverse Roof Zone DI
Transverse Wall Zone E
Transverse Wall Zone F
Transverse Wall Zone G
Transverse Wall Zone H
Roof Overhang Zone E
Roof Overhang Zone F
Roof Overhang Zone G
Roof Overhang Zone H
Longitudinal Wall Zone El
Longitudinal Wall Zone FI
Longitudinal Wall Zone CI
Longitudinal Wall Zone H
Roof Overhang Zone E 1
Roof Overhang Zone F 1
Roof Overhang Zone G 1
Roof Overhang Zone H 1
Reep Engineering Consulting, Inc
Table E Minimum Wind Loads
Wind Zone Zone Zone
Pressure Width Ht. /Leng Area
(psf) (ft) (ft) (sf)
Horizontal (Transverse) Wind Loads
10 01
10 01
1001
1001
801
5601
801
5601
7 81 62 1
781 4346
1001 800
10 01 560 0
Transverse Base Shear /Moment
Vertical (Transverse) Wind Loads
001 80 200 1600
001 80 200 1600
001 560 200 1,1200
001 560 200 1,1200
001 80 1 3 106
001 80 1 3 106
001 560 13 745
001 560 13 745
Total Uplift/Overturning Moment on Building
Unit Uplift on Building (psf)
Horizontal (Longitudinal) Wind Loads
Longitudinal Wall Zone PI 10 01 8 01 9 81 78 1
Longitudinal Wall Zone CI 10 01 32 01 14 81 472 3
Longitudinal Base Shear
Vertical (Longitudinal) Wind Loads
00 80 250 2000
00 80 250 2000
00 320 250 8000
00 320 250 8000
00 80 10 80
00 80 10 80
00 320 10 320
00 320 10 320
Zone
Force
(lb)
621 3 9 2,409
4,346 4 0 17,382
800 10 0 8,000
5,600 10 0 56,000
8,883 83,791
0
0
0
0
0
0
0
0
0
00
781
4,723
2,752
0
0
0
0
0
0
0
0
Moment
Arm
(ft)
Page A -5
Moment
(ft-lb)
30 0 0
100 0
30 0 0
100 0
40 7 0
0 7 0
40 7 0
0 7 0
0
Total Uplift/Overturning Moment on Building 0
Unit Uplift on Building (psf)1 0 0
Note Plus and minus signs signify wind pressures acting toward and away from the surfaces
resnentivelv ner ASCF Standard 7 112
Revised 11/09/06 Min Wind Loads Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007
Building Component
Roof Diaphragm Ceiling 1
20% of Flat Roof Snow Load Pf 30 -psil
One -Half Exterior Walls 1
One -Half Partitions
Roof Diaphragm Tributary Dead Load I
Base Shear
Roof Diaphragm Ceiling
Exterior Walls
Partitions
Reep Engineering Consulting, Inc
Table F Seismic Loads
Load Height/ Length Area Weight
(psf) Wft)h (ft) (sf)
15 01
001
1501
10 01
1
1
78
78
208
160
2,3671
2,3671
2,3671
1,8391
1
1
(Ib)
35,505
0
17,753
9,195
48,979
Moments on Building Due to Building Seismic Forces
Force Dist.
(Ib) (ft)
4,4741 7 8
01 78
1 1 2,2371 7 8
1 1 1,1591 7 8
Building Dead Load Restorative Moments
Roof Diaphragm Ceiling
20% of Flat Roof Snow Load, Pf 30 -psf
Exterior Walls
Partitions
Total Moment Due to Seimic Forces
Total Moment Due to Wind Forces
Total Retorative Moment
6/10 of Restorative Moment
P Delta Effects
Item
P Total vertical design Toad at and above level 1
h Story height (in)
Design story drift between level 1 and level 0
Strength Level seismic shear force VSL (Ib)
Deflection amplification factor for OSB shear walls (C
Check stability coefficient, 0 P 0 10
P -Delta Effects are not required to be consider if 0 <1=
Allowable story drift Da 0 020h (in)
35,5051
35,5051
18,3901
1
1
1
Reference
IASCE 9 5 5 7 2
IASCE 9 5 5 7 2
From Table J
'ASCE 9 5 5 7 2
'ASCE Table 9 5 2 2
'ASCE 9 5 5 7 2
IASCE 9 5 5 7.2
12003 IBC 1617 5 4
Page A -6
Shear
Load
(Ib)
4,474
0
2,237
1,159
7,869
Moment
(ft -Ib)
34,715
0
17,358
8,991
61,064
822,399
20 0 710,100
20 0 710,100
20 0 367,800
1,788,000
1,072,800
Value
35,505
93
0 169
11 017
40
0 001
0 100
1 86
Revised 01/03/07 Seismic Loads Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007
Reep Engineering Consulting, Inc Page A -7
Table G Controling Shear Loads
Main Floor Level 1 Second Floor Level
Transverse 1 Longitudinal 1 Transverse 1 Longitudinal
Wind Load (Ib) 10,1971 7,2681 N/A 1 N/A
Minimum Wind Load (Ib) 8,8831 2,7521 N/A 1 N/A
Seismic Load (Ib) 7 8691 7,8691 N/A 1 N/A
Note: Bolded /shaded cells indicate controling shear loads
Revised 01 /03 /07Controling Loads Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007
Reep Engineering Consulting, Inc
Table H Wind Shear Wall Loads
Transverse Loads
Wall Line Identification
Wall Type
Fraction of Tributary Length
Applied Shear (Ib)
Wall Length (ft)
Applied Unit Shear (Ib /ft)
Shear Wall Length (ft)
Resistive Unit Shear (lb /ft)
Unit Restoring Load (Ib /ft)
0 66[Unit Restoring Load] (Ib /ftj
Shear Wall Height (ft) 1
Max. Hold -Down 3 0 -ft SW (Ib) I
Max. Hold -Down 4 0 -ft SW (Ib)
Max. Hold -Down 6 0 -ft SW (Ib)
Max. Hold -Down 14 0 -ft SW (lb)
Max. Hold -Down 18 5 -ft SW (Ib)
Note Maximum hold -down loads are identified in bolded cells
A
OSB
0 170
1 733
22 0
79
60
289
825
550
78
1,417
1
OSB
0 50
3,634
64 0
57
41 0
89
420
280
78
268
B
OSB
0 100
1 020
22 0
46
80
127
300
200
78
589
Wall Line Identification
Wall Type
Fraction of Tributary Length
Applied Shear (Ib)
Wall Length (ft)
Applied Unit Shear (Ib /ft)
Shear Wall Length (ft)
Resistive. Unit Shear (Ib /ft)
Unit Restoring Load (Ib /ft)
0 66[Unit Restoring Load] (Ib /ftj
Shear Wall Height (ft) 1
Max. Hold -Down 3 0 -ft SW (1b)1
Max. Hold -Down 5 0 -ft SW (1b)1
Max. Hold -Down 6 5 -ft SW (1b)1
Max. Hold -Down 12 5 -ft SW (IL -1,062
Max. Hold -Down 22 0 -ft SW (Ib)
Note Maximum hold -down loads are identified in bolded cells
C I D
GWB 1 OSB
0.280
2 855
22 0
130
180
159
190
127
78
59
Shaded
Longitudinal Loads
2
OSB
0 50
3 634
54 0
67
39 0
93
420
280
78
23
-187
0 280
2 855
40 0
71
140
204
190
127
78
696
E
OSB
0 1701
1 7331
4001
431
24 0
72
255
170
78
51
cells require hold -downs
Page A -8
Total
1 00
10,197
Total
Revised 1211810Wind Shear Loads Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007
1 00
7,268
Wall Line Identification
Wall Type
Fraction of Tributary Length
Applied Shear (Ib)
Wall Length (ft)
Applied Unit Shear (Ib /ft)
Shear Wall Length (ft)
Resistive Unit Shear (Ib /ft)
Unit Restoring Load (Ib /ft)
0 66[Unit Restoring Load] (Ib /ftj
Shear Wall Height (ft)
Max. Hold -Down 3 0 -ft SW (lb)[
Max. Hold -Down 4 0 -ft SW (1b)1
Max. Hold -Down 6 0 -ft SW (1b)1
Max. Hold -Down 14 0 -ft SW (Ib)
Max. Hold -Down 18 6 -ft SW (Ib)
Reep Engineering Consulting, Inc
Table I Seismic Shear Wall Loads
Transverse Loads
A
OSB
0 170
1 338
22 0
61
80
167
825
550
78
473
B
OSB
0 100
787
180
44
80
98
300
200
78
363
C
GWB
0 280
2,203
22 0
100
180
122
190
127
78
-222
Note Maximum hold -down Toads are identified in shaded /bolded cell
Longitudinal Loads
Wall Line Identification 1 2
Wall Type OSB OSB
Fraction of Tributary Length 0 50 0 50
Applied Shear (Ib) 3 935 3,935
Wall Length (ft) 64 0 54 0
Applied Unit Shear (lb /ft) 61 73
Shear Wall Length (ft) 41 0 39 0
Resistive Unit Shear (lb /ft) 96 101
Unit Restoring Load (Ib /ft) 420 420
0 66[Unit Restoring Load] (Ib /ftj 280 280
Shear Wall Height (ft) 1 7 8 7 8
Max. Hold -Down 5 0 -ft SW (Ib) I 13
Max. Hold -Down 6 5 -ft SW (Ib) I -127
Max Hold -Down 12 5 -ft SW (Its -1,005
Max. Hold -Down 22 0 -ft SW (Ib)
Note Maximum hold -down loads are identified in shaded /bolded cells
D
OSB
0.280
2,203
40 01
55
14 01
1571
140
93
78
568
E
OSB
0 170
1,338
40 0
33
24 0
56
255
170
78
-77
Page A -9
Total
1 00
7,869
Total
Revised 01 /0310r'smic Shear Loads Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007
1 00
7,869
Reep Engineering Consulting, Inc
Table J Roof Diaphragm Calculations (2 sheets)
Description I Reference 'Equation/Comment
Roof /Floor Diaphragms Load Calculations
Diaphragm Shear/Weight IIBC Sect. 1620 4 3 F 0 2I
Diaphragm Weight (Ib) 'Report Table G W wpARoof
Strength Level Diaphragm Shear (Ib) 'IBC Sect. 1620 4 3 F 0.2I Q
Strength Level Diaphragm Unit Shear (Ib /ft) 'Calculation y 1 /2Q /b
Service Level Seismic Diaphragm Shear (Ib) IASCE Sect. 2 4 Q 0 7E 0 7Q
Service Level Diaphragm Shear (Ib) 'Report Table G Q (Minimum Wind)
Diaphragm Span (ft) 'Design Drawings b
Service Level Diaphragm Unit Shear (Ib /ft) 'Calculation y 1 /2Q /b
Shear Wall Deflection Calculations
Area of Shear Wall Chords (in 'Design Drawings Achord
Shear Wall Height, h (ft)
Minimum Shear Wall Length, b (ft)
Maximum SL Seismic Unit Shear y (Ib /ft)
Shear Wall Bending Deflection, y (in)
Shear Wall Shear Deflection, y (in)
Shear Wall Nail Spacing, S (in)
Unit Shear Per Nail vnail (Ib)
Nail Load Factor o
Nail Slip Factor e (in)
Nail Slip Deflection, y (in)
rloia -uown uetiection, y (in)
1 otai near vvaii uetiectlon ysw (In)
AuowaDie Story uritt, y (in)
Roof Diaphragm Deflection Calculations
Modulus of Elasticity- Diaphragm Chord, E (psi NDS
Area of Diaphragm Chords (in Design Drawings
Moment of Intertia of Diaphragm Chords (in Calculation
Diaphragm Length (in) Design Drawings
Calculation IYh 5v /384EI
Table A -3 17/16-in OSB
APA Design Guide' IYs vL /4Gt
(Specifications IS
IAPA Design Guide''Vnaii v/S
IAPA Design Guide Table A -2
'APA Design Guide' 'Yns 0 188I-en
IAPA Report T2002 -17 April 17 2002
1Yd Yb Ys Yns Ycs
IAPA Report T2002 -17, April 17 2002
Blocked Bending Deflection (in)
Shear Modulus, Gt (psi)
Shear Deflection (in)
Diaphragm Nail Spacing, S (in)
Unit Shear Per Nail, vnail (Ib)
Nail Slip Factor e (in)
Nail Slip Deflection, y (in)
Chord Splice Deflection, Ycs (in)
Total Blocked Deflection y (in)
Factor for Unblocked Diaphragms
2(1 5)(5 5)
I Design Drawings
I Design Drawings
'Table I
(Calculation
'Calculation
I Specifications
IAPA Design Guide'
IAPA Design Guide'
IAPA Design Guide'
IAPA Design Guide'
'APA Report T2002 -17, Table 3 for nails
'Calculation Ysw Yb ys Yns Yr>j
'IBC Table 1617 3 1 y u uzun
h=
b=
v=
y,, 8v /EAb
Ys vh /Gt
S=
Vnaii v/S
Vf vnail/
e (V 11 /616) 3.018
Yns 0 75he
No 2 Hem -Fir
Achord 2(1 5)(5 5)
I 2A /2)
L=
Unblocked Diaphragm Deflection (in) IAPA Design Guide' 'Calculation
Check Diaph. /Shear Wall Deflection Ratio >2 Of Calculation 'Yd /Ysw 2 U
Diaphragm /Shear wall deflection ratio is 2 0 so assumption that diaphragm is flexible is okay per ASCE 7 -02
Section 9 5.2 3 1
Page A -10
Value
0 234
48,979
11 461
143
8,023
10,197
40
127
165
78
30
234
0 014
0 022
60
117
0 190
0 008
0 004
0 130
0 169
1 862
1 300 000
165
1 900,800
768
0 263
83,500
0 293
60
71 6
0 006
0 072
0 063
0 690
2 50
1 73
102
Standard
Revised 01 /03RIdof Diaphragm Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 15
End Wall Diaphragm Shear (Ib)
Diaphragm Span (ft)
Diaphragm Length (ft)
Diaphragm Unit Shear (Ib /ft)
Diaphragm Moment (ft -Ib)
Diaphragm Chord Force (Ib)
Allowable Nail Load (Ib)
Reep Engineering Consulting, Inc.
Table J Roof Diaphragm Calculations (2 sheets)
Diaphragm Chord Splice Stress Calculations
Description Reference Equation /Comment
Report Table G
Design Drawings
Design Drawings
Calculation
Calculation
Calculation
NDS Table 11N
Adjustment For Wind /Seismic Loads NDS Table 2 3 2
Adjusted Allowable Nail Load (Ib) Calculation
Minimum Number of Nails Required At SpliceslCalculation
Maximum Nail Spacing at Splices (in)
Minimum Splice Length (in) Calculation
Design Splice Length (in) Design Drawings
Allowable Diaphragm Chord Force (Ib) ICalculation
Axial Chord Stess (psi) ICalculation
Allowable Parallel Compressive Stress (psi) IWWPA Table 1
Allowable Parallel Tensile Stress (psi) IWWPA Table 1
Note 1 Diaphragms And Shear Wall
Design /Construction Guide, November 2004
VEnd Q/2
b=
L=
y V/b
M v /8
C= T =Mfb=
H -F 10d Common
10- minute loads
F 1 6FNail
NN -Min C /FA
S
Lsplice SNN -Min
10d 6 -in o c.
Fort C/A T/A
No 2 Hem -Fir
No 2 Hem -Fir
Roof Uplift Calculations
Description 1 Reference (Equation /Comment(
Roof Truss Span, b (ft) I Design Drawings 1
Tributary Area to Truss Connection (sf) ITrusses 24 -in o cIA 2b/2 b I
Maximum Wind Uplift Pressure (psf) 'Zone F For 120 -mph Wind Exposure C
Maximum Wind Uplift Load At Connection (Ib)I Irup pH
Roof Unit Dead Load w (psf) 1Design Criteria I
Roof Dead Load to Truss Connection (Ib) I IbDL â1 3 W
Net Load to Truss Connection (Ib) I I INet rup I
Allowable Uplift For Simpson H2 5A Clip (Ib) ISPF /Hem -Fir with 160% Increase
Maximum Wind Uplift Pressure (psf) (Zone F For 120 -mph Wind Exposure C
Maximum Wind Uplift Load At Connection (1b)1 Irup PA
Net Load to Truss Connection (Ib) I II rup DL
Allowable Uplift For Simpson H1 Clip (Ib) ISPF /Hem -Fir with 160% Increase
Page A -10
Value
5,098
40 0
64 0
127
65,259
1,631
102
16
163 2
100
40
40 0
48 0
2,122
99
1,250
500
Value
40 0
40 0
-20 9
838
150
400
-438
535
-20 9
838
438
400
Revised 01 /03Rbu7of Diaphragm Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 16