HomeMy WebLinkAbout123 W 7th St Technical - BuildingTECHNICAL
Permit 6 2
Address 123 W 7+''
Project description
N 3 v 76- vn
Date the permit was finaled (a -09
Number of technical pages 52_
WL' one VonneS
Sri c- ti beiSt3
S REPORTTM
ICC Evaluation Service, Inc.
www.icc- es.ora
DIVISION 03— CONCRETE
Section 03151 Concrete Anchoring
REPORT HOLDER.
HILTI, INC.
5400 SOUTH 122 EAST AVENUE
TULSA, OKLAHOMA 74146
(800) 879 -8000
www.us.hilti.corn
HiltiTechEnaeus.hilti.com
EVALUATION SUBJECT
HILTI KWIK BOLT TZ CARBON AND STAINLESS STEEL
ANCHORS IN CONCRETE
1.0 EVALUATION SCOPE
Compliance with the following codes.
2006 International Building Code (IBC)
2006 International Residential Code (IRC)
1997 Uniform Building Code (UBC)
Property evaluated:
Structural
2.0 USES
The Hilti Kwik Bolt TZ anchor (KB -TZ) is used to resist static,
wind and seismic tension and shear loads in cracked and
uncracked normal- weight concrete and structural sand
lightweight concrete having a specified compressive strength
f' of 2,500 psi to 8,500 psi (17.2 MPa to 58 6 MPa); and
cracked and uncracked normal- weight or structural sand
lightweight concrete over metal deck having a minimum
specified compressive strength, f' of 3 000 psi (20 7 MPa).
The anchoring system is an alternative to cast -in -place
anchors described in Sections 1911 and 1912 of the IBC and
Sections 1923 1 and 1923.2 of the UBC The anchors may
also be used where an engineered design is submitted in
accordance with Section R301 1 3 of the IRC
3.0 DESCRIPTION
KB -TZ anchors are torque controlled, mechanical expansion
anchors. KB -TZ anchors consist of a stud (anchor body),
wedge (expansion elements), nut, and washer The anchor
(carbon steel version) is illustrated in Figure 1 The stud is
manufactured from carbon or stainless steel materials with
corrosion resistance equivalent to Type 304 stainless steel
Carbon steel KB -TZ anchors have a minimum 5 pm (0 00002
inch) zinc plating. The expansion elements for the carbon and
stainless steel KB -TZ anchors are fabricated from stainless
steel with corrosion resistance equivalent to Type 316
Copyright 2007
ESR -1917
Reissued September 1 2007
This report is subject to re- examination in two years.
Business/Regional Office 5360 Workman Mill Road, Whittier California 90601 (562) 699-0543
Regional Office 900 Montdair Road, Suite A, Birmingham, Alabama 35213 (205) 599-9800
Regional Office 4051 West Flossmoor Road, Country Club Hills, Illinois 60478 (708) 799 -2305
stainless steel The hex nut for carbon steel conforms to
ASTM A 563 -04 Grade A, and the hex nut for stainless steel
conforms to ASTM F 594
The anchor body is comprised of a high- strength rod
threaded at one end and a tapered mandrel at the other end
The tapered mandrel is enclosed by a three section
expansion element which freely moves around the mandrel
The expansion element movement is restrained by the
mandrel taper and by a collar The anchor is installed in a
predrilled hole with a hammer When torque is applied to the
nut of the installed anchor the mandrel is drawn into the
expansion element, which is in turn expanded against the wall
of the drilled hole
Installation information and dimensions are set forth in
Section 4.3 and Table 1
Normal- weight and structural lightweight concrete must
conform to Sections 1903 and 1905 of the IBC and UBC
4.0 DESIGN AND INSTALLATION
4.1 Strength Design
4.1 1 General: Design strengths must be determined in
accordance with ACI 318 -05 Appendix D and this report.
Design parameters are provided in Tables 3 and 4 Strength
reduction factors 0 as given in ACI 318 D 4 4 must be used
for load combinations calculated in accordance with Section
1605.2.1 of the IBC or Section 1612.2 of the UBC Strength
reduction factors 0 as given in ACI 318 D 4.5 must be used
for load combinations calculated in accordance with ACI 318
Appendix C or Section 1909.2 of the UBC Strength reduction
factors 0 corresponding to ductile steel elements may be
used An example calculation is provided in Figure 6
4.1.2 Requirements for Static Steel Strength in Tension.
The steel strength in tension must be calculated in
accordance with ACI 318 D.5 1 The resulting N values are
provided in Tables 3 and 4 of this report.
4.1.3 Requirements for Static Concrete Breakout
Strength in Tension: The basic concrete breakout strength
in tension must be calculated according to ACI 318 Section
D 5.2.2, using the values of h and k as given in Tables 3
and 4 in lieu of h and k, respectively The nominal concrete
breakout strength in tension in regions where analysis
indicates no cracking in accordance with ACI 318 Section
D.5.2.6 must be calculated with WCN as given in Tables 3 and
4 For carbon steel KB -TZ installed in the soffit of structural
sand lightweight or normal- weight concrete on steel deck floor
and roof assemblies, as shown in Figure 5 calculation of the
concrete breakout strength may be omitted. (See Section
41.5)
4.1.4 Requirements for Critical Edge Distance In
applications where c c and supplemental reinforcement to
control splitting of the concrete is not present, the concrete
REPORTS' are not to be construed as repr ent, ig aesthetics or any othe attributes not specifically addressed, nor are they to be construed as an
endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, Inc. express or implied, as to any
finding or other matter in this report, or as to any product covered by the report.
ursi Accradtted Program
PRODUCT CUm FIGTgM
Page 1 of 14
Page 2 of 14 ESR 1917
breakout strength in tension for uncracked concrete,
calculated according to ACI 318 Section D.5.2, must be
further multiplied by the factor Wcp,N as given by the following
equation.
W CPN c
(1)
whereby the factor W CPN need not be taken as less
than 1 5he, For all other cases, W CPN 1.0 Values for the
c
critical edge distance c must be taken from Table 3 or Table
4
4.1.5 Requirements for Static Pullout Strength j in
Tension The pullout strength of the anchor in cracked and
uncracked concrete, where applicable is given in Tables 3
and 4 In accordance with ACI 318 Section D.5 3.2, the
nominal pullout strength in cracked concrete must be
calculated according to the following equation.
Nve,r NP. l 2,500 (lb psi)
f
Npnfc NP 11 17.2 (N, MPa)
f c t
N PP 00 NP 'l 2 500 (Ib psi)
I f�
NP„ NP, 1,117.2 (N MPa)
(2)
In regions where analysis indicates no cracking in
accordance with ACI 318 Section D 5 3 6 the nominal pullout
strength in tension must be calculated according to the
following equation.
(3)
Where values for N or N are not provided in Table 3
or Table 4 the pullout strength in tension need not be
evaluated.
The pullout strength in cracked concrete of the carbon steel
KB -TZ installed in the soffit of sand lightweight or normal
weight concrete on steel deck floor and roof assemblies, as
shown in Figure 5 is given in Table 3 In accordance with ACI
318 Section D.5 3.2, the nominal pullout strength in cracked
concrete must be calculated according to Eq (2), whereby
the value of NP deck, must be substituted for N The use of
stainless steel KB -TZ anchors installed in the soffit of
concrete on steel deck assemblies is beyond the scope of
this report. In regions where analysis indicates no cracking in
accordance with ACI 318 Section D.5 3.6 the nominal pullout
strength in tension may be increased by W as given in
Table 3 W is 1.0 for all cases. Minimum anchor spacing
along the flute for this condition must be the greater of 3 0 hef
or 1 times the flute width
4.1.6 Requirements for Static Steel Shear Capacity V In
lieu of the value of V as given in ACI 318 Section D 6 1.2(c),
the values of V given in Tables 3 and 4 of this report must be
used The shear strength V deck as governed by steel failure
of the KB -TZ installed in the soffit of structural sand
lightweight or normal- weight concrete on steel deck floor and
roof assemblies, as shown in Figure 5 is given in Table 3
4.17 Requirements for Static Concrete Breakout
Strength of Anchor in Shear V or V Static concrete
breakout strength shear capacity must be calculated in
accordance with ACI 318 Section D.6.2 based on the values
provided in Tables 3 and 4 The value of used in ACI 318
Equation (D -24) must taken as no greater than h
4 1.8 Requirements for Static Concrete Pryout Strength
of Anchor in Shear VcP or V0P9. Static concrete pryout
strength shear capacity must be calculated in accordance
with ACI 318 Section D 6.3, modified by using the value of k0P
provided in Tables 3 and 4 of this report and the value of Ncb
or N cbg as calculated in Section 4 1.3 of this report. For
anchors installed in the soffit of structural sand lightweight or
normal- weight concrete over profile steel deck floor and roof
assemblies, as shown in Figure 5 calculation of the concrete
pry -out strength in accordance with ACI 318 Section D.6.3 is
not required
4.1.9 Requirements for Minimum Member Thickness,
Minimum Anchor Spacing and Minimum Edge Distance.
In lieu of ACI 318 Section D.8 3 values of c and s as
given in Tables 2 and 3 of this report must be used. In lieu of
ACI 318 Section D 8 5 minimum member thicknesses h as
given in Tables 3 and 4 of this report must be used Additional
combinations for minimum edge distance c and spacing s
may be derived by linear interpolation between the given
boundary values. (See Figure 4 The critical edge distance
at corners must be minimum 4h in accordance with ACI 318
Section D.8 6
4.1 10 Requirements for Seismic Design For load
combinations including earthquake, the design must be
performed according to ACI 318 Section D 3.3 as modified by
Section 1908.1 16 of the IBC as follows:
CODE
IBC and IRC
UBC
ACI 318 D.3.3. CODE EQUIVALENT
SEISMIC REGION DESIGNATION
Seismic Design
Categories
C D E, and F
Moderate or high Seismic Zones
seismic risk 2B, 3, and 4
Moderate or high
seismic risk
The nominal steel strength and the nominal concrete
breakout strength for anchors in tension, and the nominal
concrete breakout strength and pryout strength for anchors in
shear must be calculated according to ACI 318 Sections D.5
and D 6 respectively taking into account the corresponding
values given in Tables 3 and 4 The anchors comply with ACI
318 D 1 as ductile steel elements and must be designed in
accordance with ACI 318 Section D.3 3 4 or D 3.3.5 The
nominal pullout strength N and the nominal steel strength
for anchors in shear V must be evaluated with the values
given in Tables 3 and 4 The values of N must be adjusted
for concrete strength as follows
NP, '1,2,500 (lb psi)
f�
NP .r N 17.2 (N MPa)
(4)
If no values for N or V are given in Table 3 or Table
4 the static design strength values govern (See Sections
41.5 and 416)
41 11 Structural Sand Lightweight Concrete: When
structural lightweight concrete is used, values determined in
Page 3 of 14 ESR 1917
accordance with ACI 318 Appendix D and this report must be
modified by a factor of 0 60
4 1 12 Structural Sand Lightweight Concrete over Metal
Deck. Use of structural sand lightweight concrete is allowed
in accordance with values presented in Table 3 and
installation details as show in Figure 5
4.2 Allowable Stress Design:
4.2.1 General Design resistances for use with allowable
stress design load combinations calculated in accordance
with Section 1605.3 of the IBC and Section 1612.3 of the
UBC must be established as follows
where R O R represents the limiting design strength in
tension (ON„) or shear (OV as calculated according to ACI
318 Sections D 4 1 1 and D 4 1.2 and Section 4 1 of this
report. For load combinations including earthquake, the value
R in Equation (5) must be multiplied by 0 75 in accordance
with ACI 318 Section D.3.3 3 Limits on edge distance,
anchor spacing and member thickness, as given in Tables 3
and 4 of this report, must apply Allowable service loads for
single anchors in tension and shear with no edge distance or
spacing reduction are provided in Tables 6 through 9 for
illustration. These values have been derived per Equation (5)
using the appropriate strength reduction factors Ofrom Tables
3 and 4 and the a factors provided in Section 4.2 of this
report.
The value of a must be taken as follows
REFERENCE FOR STRENGTH
REDUCTION FACTORS
ACI 318 Section D 4 4
ACI 318 Section D 4.5
4.2.2 Interaction: In lieu of ACI 318 D 7 1 D 7.2 and D 7 3
interaction must be calculated as follows
For shear loads V 0.2 V the full allowable load in
tension Tall„w,ASD may be taken
For tension loads T s 0.2 Tallow,ASD, the full allowable load
in shear Vallow,ASD may be taken
For all other cases.
4.3 Installation
T
T allow,ASD
R
R allow,ASD
a
a
V
1.2
V allow,ASD
(5)
Including Excluding
Seismic Seismic
11 I 14
1.2 I 1.55
(6)
Installation parameters are provided in Table 1 and in Figure
2. The Hilti KB -TZ must be installed according to
manufacturer's published instructions and this report. Anchors
must be installed in holes drilled into the concrete using
carbide tipped masonry drill bits complying with ANSI
B212.15 -1994 The nominal drill bit diameter must be equal
to that of the anchor The drilled hole must exceed the depth
of anchor embedment by at least one anchor diameter to
permit over driving of anchors and to provide a dust collection
area as required The anchor must be hammered into the
predrilled hole until at least four threads are below the fixture
surface The nut must be tightened against the washer until
the torque values specified in Table 1 are achieved. For
installation in the soffit of concrete on steel deck assemblies,
the hole diameter in the steel deck not exceed the diameter
of the hole in the concrete by more than 1 8 inch (3.2 mm). For
member thickness and edge distance restrictions for
installations into the soffit of concrete on steel deck
assemblies, see Figure 5
4.4 Special Inspection.
Special inspection is required, in accordance with Section
1704 13 of the IBC and Section 1701.5.2 of the UBC The
special inspector must be on the jobsite continuously during
anchor installation to verify anchor type, anchor dimensions,
concrete type, concrete compressive strength, hole
dimensions, hole cleaning procedures, anchor spacing edge
distances, concrete thickness, anchor embedment, and
tightening torque
5.0 CONDITIONS OF USE
The Hilti KB -TZ anchors described in this report comply with
the codes listed in Section 1.0 of this report, subject to the
following conditions.
5.1 Anchor sizes dimensions and minimum embedment
depths are as set forth in this report.
5.2 The anchors must be installed in accordance with the
manufacturer's published instructions and this report. In
case of conflict, this report governs.
5.3 Anchors must be limited to use in cracked and
uncracked normal- weight concrete and structural sand
lightweight concrete having a specified compressive
strength, f' of 2,500 psi to 8,500 psi (17.2 MPa to 58 6
MPa), and cracked and uncracked normal- weight or
structural sand lightweight concrete over metal deck
having a minimum specified compressive strength f'
of 3,000 psi (20 7 MPa).
5.4 The values of used for calculation purposes must not
exceed 8 000 psi (55 1 MPa)
5.5 Loads applied to the anchors must be adjusted in
accordance with Section 1605.2 of the IBC and
Sections1612.2 or 1909.2 of the UBC for strength
design, and in accordance with Section 1605 3 of the
IBC and Section 1612.3 of the UBC for allowable stress
design.
5.6 Strength design values must be established in
accordance with Section 4 1 of this report.
5.7 Allowable design values are established in accordance
with Section 4.2.
5.8 Anchor spacing and edge distance as well as minimum
member thickness must comply with Tables 3 and 4
5.9 Prior to installation, calculations and details
demonstrating compliance with this report must be
submitted to the code official. The calculations and
details must be prepared by a registered design
professional where required by the statutes of the
jurisdiction in which the project is to be constructed
5.10 Since an ICC -ES acceptance criteria for evaluating data
to determine the performance of expansion anchors
subjected to fatigue or shock loading is unavailable at
this time, the use of these anchors under such
conditions is beyond the scope of this report.
5.11 Anchors may be installed in regions of concrete where
cracking has occurred or where analysis indicates
cracking may occur (f, f subject to the conditions of
this report.
5.12 Anchors may be used to resist short-term loading due to
wind or seismic forces, subject to the conditions of this
report.
5.13 Where not otherwise prohibited in the code KB -TZ
anchors are permitted for use with fire- resistance -rated
Page 4 of 14
construction provided that at least one of the following
conditions is fulfilled.
Anchors are used to resist wind or seismic forces only
Anchors that support a fire resistance -rated envelope
or a fire- resistance -rated membrane are protected by
approved fire resistance- rated materials, or have
been evaluated for resistance to fire exposure in
accordance with recognized standards.
Anchors are used to support nonstructural elements.
5.14 Use of zinc- coated carbon steel anchors is limited to
dry interior locations.
5.15 Special inspection must be provided in accordance with
Section 4 4
5.16 Anchors are manufactured by Hilti AG in Schaan,
Liechtenstein, under a quality control program with
inspections by Underwriters Laboratories Inc. (AA -637)
6.0 EVIDENCE SUBMITTED
ESR 1917
6.1 Data in accordance with the ICC -ES Acceptance
Criteria for Mechanical Anchors in Concrete Elements
(AC193), dated January 2007 (ACI 355.2).
6.2 A quality control manual
7.0 IDENTIFICATION
The anchors are identified by packaging labeled with the
manufacturer's name (Hilti, Inc.) and contact information,
anchor name, anchor size, evaluation report number (ICC -ES
ESR 1917), and the name of the inspection agency
(Underwriters Laboratories Inc.). The anchors have the letters
KB -TZ embossed on the anchor stud and four notches
embossed into the anchor head, and these are visible after
installation for verification.
Page 5 of 14 ESR 1917
mandrel
SETTING
INFORMATION
Anchor O.D.
Nominal bit diameter
Effective min.
embedment
Min. hole depth
Min. thickness of
Fastened parts
Installation torque
Min. dia. of hole in
fastened part
Standard anchor
lengths
Threaded length
(incl. dog point)
Unthreaded length
expansion
element
Symbol
de
dar
het
he
fmm
T nst
dh
la ch
thread
tunthr
TABLE 1— SETTING INFORMATION (CARBON STEEL AND STAINLESS STEEL ANCHORS)
Units
3/8
In. 0.375
(mm) (9.5)
In.
FIGURE 1 —HILTI CARBON STEEL KWIK BOLT TZ (KB -TZ)
col ar
bolt
3/8
setting assist
1/2
0.5
(12.7)
1/2
In. 2 1/8 2 1/8
(mm) (54) (54)
UNC thread
Nominal anchor diameter (in.)
hex nut
dog point
In. 2 2 3 -1/4 3 -1/8 4 3 -3/4 4 -3/4
(mm) (51) (51) (83) (79) (102) (95) (121)
In. 2 5/8 2 5/8 4 3 -7/8 4 -3/4 4 -5/8 5 -3/4
(mm) (67) (67) (102) (98) (121) (117) (146)
In. 1/4 3/4 1/4 3/8 3/4 1/8 1 -5/8
(mm) (6) (19) (6) (9) (19) (3) (41)
ft -lb 25 40 60 110
(Nm) (34) (54) (81) (149)
In. 7/16 9/16 11/16 13/16
(mm) (11 1) (14.3) (17.5) (20.6)
5/8 I 3/4
0.625 0.75
(15.9) (19.1)
5/8 3/4
In. 3 1 3 -314 I 5 I 3.3/4 4-1/2 15 -1/2 I 7 14 -3/4 I 6 18 -112 I 10 15 -1/2 I 8 I 10
(mm) (76) I (95) I (127) I (95) I (114) I (140) I (178) I (121) I (152) I (216) I (254) I (140) I (203) I (254)
In. 7/8 11 5/8 12 718 11 518 2 318 13 -3/8 4 -718 11 -112 12 3/4 15 -114 16 -314 11 -1/2 1 I 6
(mm) (22) I (41) I (73) I (41) I (60) I (86) I (124) I (38) I (70) I (133) I (171) I (38) I (102) I (152)
3 -1/4 4
(83) (102)
1 The minimum thickness of the fastened part is based on use of the anchor at minimum embedment and is controlled by the length of thread. If a
thinner fastening thickness is required, increase the anchor embedment to suit.
Page 6 of 14 ESR 1917
(thread
tunthr
Length ID marking
on bolt head
Length of From
anchor Up to but
r
ch
(inches) not
including
tanch
I 1'Y2
d
FIGURE 2 —KB -TZ INSTALLED
her
th
h
TABLE 2— LENGTH IDENTIFICATION SYSTEM (CARBON STEEL AND STAINLESS STEEL ANCHORS)
A B C D E F G H I J K L M N O P Q R S T U V W
2 21/2 3 31/2 4 41/2 5 51/2 6 61/2 7 71/2 8 8' 9 91/2 10 11 12 13 14 15
2 21/2 3 31/2 4 41/2 5 5 6 6 1 7 7 1 8 8'1 9 91/2 10 11 12 13 14 15 16
FIGURE 3 —BOLT HEAD WITH LENGTH IDENTIFICATION CODE AND KB -TZ HEAD NOTCH EMBOSSMENT
Page 7 of 14 ESR 1917
DESIGN INFORMATION Symbol Units
Anchor O.D
Effective min. embedment'
Min member thickness
Critical edge distance
Min. edge distance
Min. anchor spacing
d
her
c
Cm„
for s
Sm�
for c
Min. hole depth in concrete h
Min. specified yield strength fy
Min. specified ult. strength f„
Effective tensile stress area A
Steel strength in tension N
Steel strength in shear V
Steel strength in shear
seismic' V ors
Steel strength in shear
concrete on metal deck" V ,deck
Pullout strength uncracked
concretes N°•
Pullout strength cracked
concretes N
Pullout strength concrete on
metal decks N °•deck,
Anchor category'
Effectiveness factor uncracked concrete
Effectiveness factor k cracked concrete
4 k„ sr/k, 9
Coefficient for pryout strength, k
Strength reduction factor 0 for tension, steel
failure modes
Strength reduction factor 0 for shear steel failure
modes
Strength reduction 0 factor for tension, concrete
failure modes or pullout, Condition B"
Strength reduction 0 factor for shear concrete
TABLE 3- DESIGN INFORMATION, CARBON STEEL KB -TZ
In.
(mm)
In.
(mm)
In.
(mm)
In.
(mm)
In.
(mm)
In.
(mm)
In.
(mm)
In.
(mm)
In.
(mm)
lb/in`
(N /mm
lb/in`
(N /mm
In`
(mm
lb
(kN)
lb
(kN)
lb
(kN)
lb
(kN)
lb
(kN)
lb
(kN)
lb
(kN)
Nominal anchor diameter
3/8 I 1/2 5/8 3/4
0.375
(9.5)
2 2
(51) (51)
4 5 4 6
(102) (127) (102)
4 -3/8 4 5 -1/2
(111) (102)
2 1/2
(64)
5
(127)
2 1/2
(64)
3 -5/8
(92)
2 5/8
(67)
100,000
(690)
125 000
(862)
0 052
(33.6)
6,500
(28.9)
3,595
(16.0)
2,255
(10 0)
2130
(9.5)
2,515
(11.2)
2,270
(10 1)
1 460
(6.5)
10
0.5
(12.7)
(152)
4 -1/2
(140) (114)
2 3/4
(70)
5 -3/4
(146)
2 3/4
(70)
4 -1/8
(105)
2 5/8
(67)
84,800
(585)
106 000
(731)
0 101
(65.0)
10 705
(47 6)
6,405
(28.5)
6 405
(28.5)
3,000 4 945
(13.3) (22)
NA 5,515
(24.5)
NA 4 915
(21.9)
1 460 2,620
(6.5) (11 7)
3 -1/4 3 -1/8
(83) (79)
6 8 5
(152) (203) (127)
7 1/2 I 6 6 -1/2
(191) I (152) (165)
2 3/8 3 -5/8
(60) (92)
5 -3/4 6 -1/8
(146) (156)
2 3/8 3 -1/2
(60) (89)
3 -1/2 4 -3/4
(89) (121)
4 3 -7/8
(102) (98)
1 41
0 75
0.65
0.65
0 70
4 600
(20.5)
NA
NA
2,000
(8.9)
1
24
17
0.625
(15.9)
4
(102) (95)
6 I 8 6 8
(152) I (203) (152) (203)
8 -3/4 6 -3/4 10 8
(222) (171) (254) (203)
3 -1/4 4 -3/4
(83) (121)
5 -7/8 10 -1/2
(149) (267)
3 5
(76) (127)
4 -1/4 9 -1/2
(108) (241)
4 -3/4 4 -5/8
(121)
84,800
(585)
106,000
(731)
0.162
(104 6)
17 170
(76.4)
10,555
(47 0)
10,555
(47 0)_
6,040
(26.9)
9,145
(40.7)
4,645
(20 7)
2.0
0 75
(19 1)
3 -3/4
(117)
84,800
(585)
106,000
(731)
0.237
(152.8)
25,120
(111.8)
15,930
(70.9)
14,245
(63.4)
NP
8,280
(36.8)
NA NA
NP
4 -3/4
(121)
8
(203)
9
(229)
4 -1/8
(105)
8 -7/8
(225)
4
(102)
7 3/4
(197)
5 -3/4
(146)
NP
10 680
(47.5)
NA
NP
failure modes, Condition B"
For SI: 1 inch 25.4 mm, 1 lbf 4 45 N, 1 psi 0.006895 MPa For pound -inch units: 1 mm 0.03937 inches.
'See Fig. 2.
2 For structural light- weight concrete over metal deck, see Figure 5.
3 See Section 4 1 10 of this report.
"See Section 4.1.6. NP (not permitted) denotes that the condition is not supported by this report.
5 See Section 4.1.5 of this report. NA (not applicable) denotes that this value does not control for design.
'See Section 4.1.5 of this report. NP (not permitted) denotes that the condition is not supported by this report. Values are for cracked concrete. Values are applicable to
both static and seismic load combinations.
'See ACI 318 -05 Section D 4 4
tee ACI 318 -05 Section D.5.2.2.
'See ACI 318 -05 Section D.5.2.6.
''The KB -TZ is a ductile steel element as defined by ACI 318 Section D.1
"For use with the load combinations of ACI 318 Section 9.2. Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D.4 4 is not
provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors
associated with Condition A may be used.
Page 8 of 14 ESR 1917
DESIGN INFORMATION
Anchor O.D
Effective min. embedment'
Min. member thickness
Critical edge distance
Min. edge distance
Min anchor spacing
Min. hole depth in concrete
Min. specified yield strength
Min. specified ult. Strength
Effective tensile stress area
Steel strength in tension
Steel strength in shear
Pullout strength in tension,
seismic
Steel strength in shear
seismic
Pullout strength uncracked
concrete
Pullout strength cracked
concrete
Coefficient for pryout strength, k
Symbol Units
d
h
hmfn
c
cmm
for s
Smin
for c z
h
f
f„
A
N
V
V eis
N
Anchor category'
Effectiveness factor k,,,,,, uncracked concrete
Effectiveness factor k,, cracked concrete
�c. k,,rn,/ku
Strength reduction factor 0 for tension, steel
failure modes'
Strength reduction factor 0 for shear steel failure
modes'
Strength reduction 0 factor for tension, concrete
failure modes, Condition B
TABLE 4- DESIGN INFORMATION, STAINLESS STEEL KB -TZ
in
(mm)
in.
(mm)
in.
(mm)
in.
(mm)
in.
(mm)
in.
(mm)
in.
(mm)
in.
(mm)
in.
(mm)
lb /in
(N /mm
lb /in`
(N /mm
in
(mm
lb
(kN)
lb
(kN)
lb
3/8
0.375
(9 5)
2
(51)
4 5
(102) (127)
4 -3/8 I 3 -7/8
(111) I (98)
2 1/2
(64)
5
(127)
2 1/4
(57)
3 -1/2
(89)
2 5/8
(67)
92,000
(634)
115,000
(793)
0.052
(33.6)
5 968
(26.6)
4,870
(21 7)
N NA
(kN)
lb
(kN)
lb
(kN)
lb
(kN)
2,825
(12.6)
2,630
(11 7)
2,340
(10 4)
17
1 41 I
Nominal anchor diameter
1/2 I 5/8
0.5 0 625
(12.7) (15.9)
2 I 3 -1/4 I 3 -1/8 4
(51) I (83) I (79) (102)
4 6 6 815 618
(102) I (152) I (152) (203) I (127) (152) I (203)
5 -1/2 4 -1/2 7 1/2 6 7 8 -7/8 6
(140) (114) I (191) (152) (178) (225) (152)
2 -7/8 2 1/8 3 -1/4 2 3/8
(73) (54) (83) (60)
5 -1/4 5 -1/2 5 -1/2
(133) (140) (140)
2 2 3/4 2 3/8
(51) (70) (60)
3 -1/4 4 -1/8 4 -1/4
(83) (105) (108)
4 3 -7/8 4 -3/4
(102) (98) (121)
5 -3/4
(146)
2 7/8
(73)
4 -1/2
(114)
2 5/8
(67)
92,000
(634)
115,000
(793)
0.101
(65.0)
11,554
(51 7)
6,880
(30.6)
2,735
(12.2)
6,880
(30 6)
NA
5,760
(25.6)
92,000
(634)
115,000
(793)
0 162
(104 6)
17,880
(82.9)
11,835
(52.6)
NA
11,835
(52.6)
NA NA
3,180 5,840
NA NA
(14 1) (26.0)
1
24
24 I 17 I 17 .I 17
1.00 I 1 41 11 41 I 1 41 I
0 75
0 65
0 65
1 0 2.0
0 70
3/4
0.75
(19 1)
3 -3/4
(95)
6 I 8
(152) j (203)
10 I 7
(254) I (178)
4 -1/4
(108)
10
(254)
5
(127)
9 -1/2
(241)
4 -5/8
(117)
76 125
(525)
101,500
(700)
0.237
(152.8)
24,055
(107.0)
20,050
(89.2)
NA
14 615
(65.0)
12,040
NA
8,110
(36.1)
24
1.00 I
4 -3/4
(121)
8
(203)
9
(229)
4
(102)
8 -1/2
(216)
4
(102)
7
(178)
5 -3/4
(146)
(53.6)
NA
17
Strength reduction 0 factor for shear concrete
failure modes, Condition B
For SI: 1 inch 25.4 mm, 1 Ibf 4.45 N, 1 psi 0.006895 MPa For pound -inch units: 1 mm 0.03937 inches
'See Fig. 2.
'See Section 4 1 10 of this report. NA (not applicable) denotes that this value does not control for design.
'See Section 4 1.5 of this report. NA (not applicable) denotes that this value does not control for design.
tee ACI 318 -05 Section D 4.4
'See ACI 318 -05 Section D.5.2.2.
6 See ACI 318 -05 Section D.5.2.6.
'The KB -TZ is a ductile steel element as defined by ACI 318 Section D.1
'For use with the load combinations of ACI 318 -05 Section 9.2. Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D 4 4 is
not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors
associated with Condition A may be used.
Page 9 of 14 ESR 1917
3/8 2
2
1/2
3 1/4
5/8 3 1/8
4
3 3/4
3/4
4 3/4
For SI: 1 lbf 4 45 N, 1
sde ign Cdesign
1 168
1 576
2,561
3 078
4,246
3,844
4,959
psi 0.00689 MPa
1,221
1,576
2,674
3,078
4 457
4 046
5,590
h h,,
FIGURE 4- INTERPOLATION OF MINIMUM EDGE DISTANCE AND ANCHOR SPACING
TABLE 5 -MEAN AXIAL STIFFNESS VALUES R FOR KB -TZ CARBON AND STAINLESS STEEL ANCHORS IN
NORMAL WEIGHT CONCRETE (10 /in.)
Concrete condition I carbon steel KB -TZ, all diameters I stainless steel KB -TZ, all diameters
uncracked concrete I 700 I 120
cracked concrete I 500 I 90
'Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application.
TABLE 6 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE STATIC TENSION (ASD), NORMAL WEIGHT
UNCRACKED CONCRETE, CONDITION B (pounds)1'2' 3
Concrete Compressive Strength
Nominal Embedment
Anchor Depth he, fc 2,500 psi I f'c 3,000 psi I f'c 4 000 psi I f'c 6,000 psi
Diameter (in.) Carbon Stainless Stainless
steel steel steel
Carbon
steel
1,279
1 726
2,805
3 372
4 651
4,211
5 432
e design
1,338
1 726
2,930
3,372
4 883
4 432
6,124
For pound -inch units: 1 mm 0.03937 inches
C min at s
hmin
Cdesign
edge distance c
Carbon Stainless Carbon Stainless
steel steel steel steel
1 477 1 545 1 809 1,892
1993 1,993 2,441 2,441
3,239 3,383 3,967 4 143
3,893 3,893 4 768 4 768
5,371 5 638 6 578 6,905
4 863 5 118 5,956 6,268
6,272 7 071 7,682 8 660
'Values are for single anchors with no edge distance or spacing reduction. For other cases, calculation of Rd as per ACI 318 -05 and
conversion to ASD in accordance with Section 4.2.1 Eq. (5) of this report is required.
2 Values are for normal weight concrete. For sand lightweight concrete, multiply values by 0.60
3 Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D 4 4 is not provided, or where pullout or
pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors
associated with Condition A may be used.
Page 10 of 14 ESR 1917
TABLE 7 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE STATIC TENSION (ASD), NORMAL WEIGHT
CRACKED CONCRETE, CONDITION B (pounds)1.2, 3
Concrete Compressive Strength
Nominal Embedment f'c 2,500 psi 3,000 psi f'c 4 000 psi fc 6,000
Anchor Depth h I i f
p p I p I psi
p
Diameter (in.) Carbon Stainless Carbon Stainless Carbon Stainless Carbon Stainless
steel steel steel steel steel steel steel steel
I 3/8 2 I 1 054
1/2 2 I 1 116
31/4 2,282
5/8 3 1/8 2,180
4 3 157
3/4 3 3/4 I 2,866
4 3/4 I 4 085
For SI: 1 Ibf 4 45 N 1 psi 0.00689 MPa
1 086
1 476
2,312
2,180
2,711
3 765
4 085
1 155
1,223
2,500
2,388
3 458
3 139
4 475
For pound inch units: 1 mm 0 03937 inches
3/8 1 669
1/2 2,974
5/8 4,901
3/4 I 7,396
For SI: 1 Ibf 4 45 N
1 190
1 617
2,533
2,388
2,970
4 125
4 475
1 333
1 412
2,886
2,758
3,994
3,625
5,168
TABLE 8 -KB -TZ CARBON AND STAINLESS
STEEL ALLOWABLE STATIC SHEAR LOAD (ASD),
(pounds)
Nominal Allowable Steel Capacity, Static Shear
Anchor
Diameter Carbon Steel
Stainless Steel
2,661
3 194
5 495
9,309
'Values are for single anchors with no edge distance or
spacing reduction due to concrete failure
1 374
1 868
2,925
2,758
3,430
4 763
5 168
1 633
1 729
3,535
3 377
4,891
4 440
6,329
1 683
2,287
3,582
3 377
4,201
5 833
6,329
'Values are for single anchors with no edge distance or spacing reduction. For other cases, calculation of Rd as per ACI 318 -05 and
conversion to ASD in accordance with Section 4.2.1 Eq. (5) is required.
2 Values are for normal weight concrete. For sand lightweight concrete multiply values by 0.60
3 Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D 4 4 is not provided, or where pullout or
pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors
associated with Condition A may be used.
Page 11 of 14 ESR 1917
Nominal Embedment
Anchor Depth h
Diameter (in.)
3/8
TABLE 9 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE SEISMIC TENSION (ASD), NORMAL WEIGHT
CRACKED CONCRETE, CONDITION B (pounds)
Concrete Compressive Strength
1/2
5/8
3/4
2 1 006
2 1 065
3 1/4 I 2,178
3 1/8 I 2,081
4 I 3 014
3 3/4 I 2,736
4 3/4 I 3,900
fc 2,500 psi
Carbon Stainless
steel steel
For SI: 1 lbf 4 45 N 1 psi 0 00689 MPa For pound -inch units: 1 mm 0 03937 inches
'Values are for single anchors with no edge distance or spacing reduction. For other cases, calculation of Rd as per ACI 318 -05 and conversion
to ASD in accordance with Section 4.2.1 Eq. (5) is required.
2 Values are for normal weight concrete. For sand lightweight concrete multiply values by 0.60
'Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D 4 4 is not provided, or where pullout or
pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors
associated with Condition A may be used.
1 037
1,212
2,207
2,081
2,588
3,594
3,900
TABLE 10 -KB -TZ CARBON AND STAINLESS
STEEL ALLOWABLE SEISMIC SHEAR LOAD (ASD),
(pounds)
Nominal
Anchor
Diameter
f'c 3,000 psi
Carbon
steel
1 102
1 167
2,386
2,280
3,301
2,997
4,272
Stainless
steel
1 136
1,328
2,418
2,280
2,835
3,937
4,272
Allowable Steel Capacity, Seismic Shear
Carbon Steel Stainless Steel
3/8 999 1,252
1/2 I 2,839 3 049
5/8 I 4 678 5,245
3/4 I 6,313 6 477
For SI: 1 lbf 4 45 N
'Values are for single anchors with no edge distance or
spacing reduction due to concrete failure.
f'c 4,000 psi f c 6,000 psi
Carbon Stainless
steel steel
1,273 1 312
1,348 I 1,533
2,755 2,792
2,632 2,632
3 812 I 3,274
3 460 I 4 546
4 933 4 933
Carbon
steel
1,559
1 651
3 375
3,224
4 669
4,238
6,042
Stainless
steel
1 607
1,878
3,419
3,224
4,010
5,568
6 042
Page 12 of 14 ESR 1917
TABLE 11 —KB -TZ CARBON STEEL ALLOWABLE TENSION AND SHEAR LOADS (ASD),
INSTALLED INTO THE UNDERSIDE OF A STRUCTURAL SAND LIGHTWEIGHT CONCRETE OVER METAL DECK SLAB
(pounds)
NOMINAL EMBEDMENT TENSION TENSION SHEAR SHEAR
ANCHOR DEPTH, h SEISMIC NONSEISMIC SEISMIC NONSEISMIC
DIAMETER (inches)
3/8 2 709 743 I 944 989
1/2 2 709 743 1,330 1 393
1/2 3-1/4 1,272 1,333 2,192 2,296
5/8 3-1/8 971 1 017 1 2,039 2,136
5/8 I 4 2,255 2,362 I 2,677 2,804
For SI 1 plf 4 45 N, 1 inch =25 4 mm
'Pullout strength values N are for anchors installed in structural sand lightweight concrete having a minimum 2,500 psi
compressive strength at the time of installation See Table 3. The values listed in Table 11 have been calculated assuming a
minimum 3 000 psi concrete compressive strength The pullout strengths may be adjusted for other lightweight concrete
compressive strengths in accordance with Section 4 1.5 using the following reduction equation.
Np,deck,fc Np,deck f; (lb psi)*
2,500
Np,deck,rc Np,deck f (N, MPa)*
17.2
*This equation can be used for structural sand lightweight concrete compressive strengths between 2,500 psi and 4 000 psi (17
MPa and 28 MPa).
Z Minimum anchor spacing along the flute shall be the greater of 3.0h or 1.5 times the flute width in accordance with Section 4 1 4
3 Anchors in the lower flute may be installed with a maximum 1 -inch offset in either direction. See Figure 5
4 Allowable seismic tension and shear loads are calculated by multiplying N and V by the strength reduction factor of
0 65 the seismic reduction 1 factor of 0 75 according to ACI 318 D3.3 3 and the dividing by an a of 1 1 in accordance with
Section 4.2.1
5 Allowable nonseismic tension and shear loads are calculated by multiplying N and Vs,deck by the strength reduction Cofactor of
0 65 and dividing by an a of 1 4 in accordance with Section 4.2.1 Allowable nonseismic loads are calculated assuming the
lightweight concrete over metal deck is cracked.
Page 13 of 14 ESR 1917
a
u) U
Z d
MIN. 3,000 PSI NORMAL OR SAND
LIGHTWEIGHT CONCRETE
UPPER
FLUTE
(VALLEY)
MIN. 4 -112' MIN. 4 -1/2'
I I_ MIN. 12' TYP I
MAX.1
OFFSET
TYP
MIN. 20 GAUGE
STEEL W -DECK
LOWER
FLUTE
(RIDGE)
FIGURE 5— INSTALLATION IN THE SOFFIT OF CONCRETE OVER METAL DECK FLOOR AND ROOF ASSEMBLIES
Page 14 of 14 ESR 1917
Given
Two 1 /2 -inch KB -TZ anchors under
static tension load as shown
h 3.25 in.
Normal wt. concrete, c 3 000 psi
No supplementary reinforcing
Assume uncracked concrete
Condition B per ACI 318 D 4 4 c)
Calculate the allowable tension load for
this configuration
6'
Calculation per ACI 318 -02 Appendix D and this report.
A l t Tallow y A
v
Step 1 Calculate steel capacity' ON OnA 0 75 x 2 x 0 101 x 106,000 16,059lb
Check whether f is not greater than 1 9f and 125,000 psi
Step 3 Calculate concrete breakout strength of anchor in tension.
Ncbg ANC Wec,NVed,NVc,NV'cp,NNb
NCO
Step 3a. Verify minimum member thickness, spacing and edge distance
s mi
hm,n 6 in 6 in. ok
slope 2.375 5 75 3 0
P
3.5 2.375
For Cmin 4in
2.375 controls
s 5 75 [(2.375 4.0)( 3.0)] 0.875 2.375in 6in ok 0.875
A
Step 3b For AN check 1.5h 1.5(3.25) 4.88 in c 3.0h 3(3.25) 9 75 in s
Step 3c Calculate AN0 and AN for the anchorage ANo 9ha, 9 x (3.25) 95.1 in
A (1 5h c)(3he, s) [1.5 x (3.25) 4] [3 x (3.25) 6] 139.8 in 2 A ok
Step 3d. Determine U eN 0 Wec,N 1.0
Step 3e. Calculate Nb. Nb kuncr fc 17 15 17 X V3 000 x 3.25 =5 456 lb
Step 3f Calculate modification factor for edge distance tved,N 0.7 +0.3 4 0.95
1.5(3.25)
FIGURE 6- EXAMPLE CALCULATION
1
1.5h c
A -A
cmi
D.5.2.1
D.8
AC
1.5h
s 6'
1.5h
Code Report
Ref Ref
D 5 1.2 Table 3
D44a)
§41.2
§41.3
Table 3
Fig 4
D.5.2.1
Table 3
D.5.2.1 Table 3
D 5.2 4
D.5.2.2 Table 3
D.5.2.5 Table 3
Step 3g yr N =1 41 (uncracked concrete) D.5.2.6 Table 3
Step 3h. Calculate modification factor for splitting Wcp N max e f check 4 0.53; 1.5 3.25 0.65
c;1.5h
c ac 7.5 7.5
1.5h
0.65 0.53 controls
eac
Step 3i. Calculate (DN (DN 0 65 x 139.8 x 1 00 x 0.95 x 1 41 x 5 456 x 0 65 4,539 lb D.5.2.1 4 1.2
95 1 D 4 4 c) Table 3
Step 4 Check pullout strength: Per Table 3 OnNpn,rc 0 65x2x5,515 lb 3,000 7,852 lb >4539 OK D.5.3.2 4 1.5
12 D 4 4 c) Table 3
I Step 5 Controlling strength. 'N 4,539 lb OnN ON ON controls I D 4 1.2 I Table 3
Step 6 Convert value to ASD• Tallow 4 3,242 lb 4
l4
§41.3
Table 3
:4f
A. Abrous, Ph D P E
PLAN 1768 -08 [30 -PSF SNOW, 120 mph, Exp C, SDC D2]
PROJECT INFORMATION AND CRITERIA
1 PROJECT INFORMATION
OWNER /ADDRESS
TAX PARCEL NUMBER/SITE ADDRESS
JOB NUMBER
2 STRUCTURAL DESIGNER INFORMATION
ABDELOUAHAB (Wahab) ABROUS Ph D P E
HiLine Homes Inc
Engineering Department
11306 62ND Ave E Puyallup WA 98373
Phone (253) 770 -2244 Ext. 132
Email Wabrous(a�HiLinehomes.com
TYPE OF DESIGN
Revised
9/3/2008
Washington Licence No 36110
Oregon License No 81419PE
EXTENT OF DESIGN
T4LE
REFERENCE CODES AND STANDARDS
HiLine Homes, Inc. Page 1 of 37
See Permit Application
See Permit Application
See Job Binder
Note The Above stamp applies to the structural
members and assemblies described in the following
calculations only and is valid with a copied or wet
stamp intended for reuse by HiLine Homes Inc.
3 SCOPE OF DESIGN
LATERAL ENGINEERING ANALYSIS OF
WIND AND SEISMIC FORCES
Structural specifications for residence
2006 International Building Code (IBC)
2006 International Residential Code (IRC)
National Design Specification (NDS)
American Society of Civil Engineers
(ASCE) Standard 7
American Society for Testing Materials
(ASTM) Standard A307
American Plywood Association (APA)
Diaphragms and Shear Wall
Design /Construction Guoide November
2004
PROJECT INFORMATION AND CRITERIA
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Printed
10/20/2008
A. Abrous, Ph.D., P E
GROUND SNOW LOAD (LIVE LOAD)
ROOF DEAD LOAD
EXTERIOR WALL DEAD LOAD
INTERIOR WALL DEAD LOAD
SEISMIC DESIGN CATEGORY
BASIC WIND SPEED
WIND EXPOSURE FACTOR
ALLOWABLE SOIL PRESSURE
MATERIAL SPECIFICATIONS
Revised
9/3/2008
HiLine Homes, Inc. Page 2 of 37
4 DESIGN CRITERIA
ILroof 30 -psf maximum
Droof 15 -psf
Dwaii 15 -psf
I Dwal1 10 -psf
ISDC D2
1120 -mph
IC
11 500 -psf
Framing Material No 2 Hem -Fir minimum
Wood Structural Panels APA Rated
10d Nails Diameter 0 148 -in
8d Nails Diameter 0 131 -in
Concrete Strength 28 -days 2 500 -psi
Anchor Bolts ASTM A307 Steel
CONTENTS
Project Information and Criteria I Page 1
Description I Page 3
Specifications and Design Criteria I Page 3
Engineering Calculations I Page 3
LIST OF TABLES
Table A. Structural Specifications and Allowable Loads Page 6
Table B Building Data Page 16
Table C Wind Design Criteria Page 17
Table D Seismic Design Criteria Page 18
Table E -1 Wind Loads (House) Page 19
Table E -2 Wind Loads (Garage) Page 21
Table F -1 Minimum Wind Loads (House) Page 22
Table F -2 Minimum Wind Loads (Garage) Page 24
Table G -1 Seismic Loads (House) Page 25
Table G -2 Seismic Loads (Garage) Page 27
Table H Controlling Shear Loads Page 28
Table I -1 Wind Shear Wall Loads (House) Page 29
Table 1 -2 Wind Shear Wall Loads (House +Garage) Page 30
Table J -1 Seismic Shear Wall Loads (House) Page 32
Table J -2 Seismic Shear Wall Loads (House +Garage) Page 33
Table K. Roof Diaphragm Load Calculations Page 35
PROJECT INFORMATION AND CRITERIA Printed
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 10/20/2008
A. Abrous, Ph.D P E.
DESCRIPTION
SPECIFICATIONS AND DESIGN CRITERIA
ENGINEERING CALCULATIONS
Revised
9/3/2008
HiLine Homes, Inc. Page 3 of 37
This report provides engineering calculations and structural design sepcifications for HiLine
Homes Plan 1768b The two story house is 1768 sf in area plus an optional two car
garage Design specifications are provided in Table A, building data are given in Table B and
wind and seismic criteria including calculations are included in Tables C and D respectively
Laterial engineering calculations are provided in Tables E through K. Calculations are
performed using Microsoft Excel worksheets
Structural specifications and design criteria are provided in Tables A, B C and D as
discussed in the following paragraphs
Table A. Specifications of Structural Components and Fasteners
Specifications are provided for size and spacing of anchors bolts shear wall hold
downs shear wall sheathing and nailing shear transfer and roof framing
Structural specifications are identified with respect to Wall Lines which are shown
on Plan Sheet S2
Table B Building Data
The building geometrical dimensions are specified including lengths of exterior
walls and interior partitions for the transverse and longitudinal directions The
maximum ground snow load is P of 30 psf
Table C Wind Design Criteria
ASCE Standard 7 Section 6 4 Method 1 Simplified Procedure is used for
determining wind loads Wind design criteria are based on an 120 mph basic
wind speed and Building Height and Exposure Factor (A) C or an equivalent
110 -mph basic wind speed and Building Height and Exposure Factor (A) D
Overturning moments due to wind forces are less than allowable restorative dead
load moments as shown in Table G Uplift loads for roof tributaries are calculated
assuming the maximum uplift for wind Zone E or F applies to the tributary area
Table D Seismic Design Criteria
Seismic design loads are based on Site Class D soils per ASCE Standard 7
Section 11 4 2 and Table 20 3 -1 for stiff soils The Equivalent Lateral Force
Procedure of the American Society of Civil Engineers (ASCE) Standard 7 Section
12 8 is used for calculating seismic forces.
PROJECT INFORMATION AND CRITERIA
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Printed
10/20/2008
A. Abrous, Ph.D., P E
Revised
9/3/2008
HiLine Homes, Inc. Page 4 of 37
Engineering calculations are documented in Tables E through K based on specifications in
Tables B C and D These tables provide the following information
Table E Wind Loads
Wind loads and overturning moments are calculated in Table E for two orthogonal
directions transverse and longitudinal Calculated values are linked to Table H
Controlling Shear Loads to determine if wind minimum wind or seismic loads
control design of lateral restraint. Unit uplift on the building is also calculated for
both the transverse and longitudinal directions Overturning loads due to design
base winds are calculated with a link to Table G Seismic Loads where they are
compared to seismic and building restoring loads
Table F Minimum Wind
Minimum wind loads are provided in Table F based on horizontal pressures equal
to 10 -psf and vertical pressures equal to zero per ASCE 7 Section 6 4.2 1 1
Calculations are performed for both transverse and longitudinal directions and
linked to Table H for comparison to wind and seismic loads
Table G Seismic Loads
Table G provides seismic shear loads based on seismic criteria in Table D
Calculations are based on seismic design criteria in Table D and the Lateral Force
Procedure method of ASCE Standard 7 Section 12 8 This procedure is valid for
Occupancy Category I or II buildings of light frame construction not exceeding three
stories in height for SDC D and higher per ASCE 7 Table 12 6 1 Seismic loads
are calculated for transverse and longitudinal directions Overturning moments are
calculated in the table and compared to allowable restoring dead load moments
the building is stable with respect to overturning
Table H Controlling Shear Loads
Table H provides a summary of seismic shear loads Shear load values from
Tables E F and G are compared to determine controlling lateral forces The
controlling values are linked to Tables I and K for calculating maximum shear wall
loads for wind and seismic forces respectively
Table I Wind Shear Loads
Table H provides transverse and longitudinal loads on the building structure
including wall length applied unit shear shear wall length resistive unit shear unit
drag load unit dead load on shear walls and hold -down loads for the various shear
wall lengths based on controlling wind shear loads from Table J Shear wall hold
downs are calculated based on wind and dead load combinations using the
allowable stress design method per ASCE Standard 7 Section 2 4
PROJECT INFORMATION AND CRITERIA
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Printed
10/20/2008
A. Abrous, Ph.D., P E.
Revised
9/3/2008
HiLine Homes, Inc Page 5 of 37
Table J Seismic Shear Loads
Table J provides transverse and longitudinal loads on the building structure
including wall length applied unit shear shear wall length resistive unit shear unit
drag load unit dead load on shear walls and hold -down loads for the various shear
wall lengths based on seismic shear loads from Table H Shear wall hold -down
loads are calculated based on wind and dead load combinations using the
allowable stress design method per ASCE Standard 7 Section 2 4
Table K. Roof Diaphragm Calculations
Table H provides roof diaphragm load calculations for determining diaphragm shear
for seismic loads and comparing these loads with wind and minimum wind loads
from Table H Shear wall and roof diaphragm deflections are calculated to confirm
that the diaphragm is flexible as allowed by ASCE Standard 7 Section 12 3 1 1
Strength level seismic unit shear values are used to calculate deflections
Calculations are based on American Plywood Association (APA) Report T2002 -17
Estimating Wood Structural Panel Diaphragm and Shear Wall Deflection April 17
2002 Uplift due to design base wind loads are calculated assuming that the roof
experiences a maximum uplift pressure from wind zone E or Zone F Allowable
roof dead loads plus truss connections exceed uplift by an acceptable margin
PROJECT INFORMATION AND CRITERIA
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Printed
10/20/2008
A. Abrous, Ph D P E
TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
THIS TABLE PROVIDES SUMMARY STRUCTURAL SPECIFICATIONS ADDITIONAL DETAILS
FOR STANDARD SPECIFICATIONS AND CALCULATION OF ALLOWABLE LOADS ARE
PROVIDED AT THE END OF THIS TABLE.
EXPLANATION OF WALL LINES
Shear walls and structural specifications are identified with Wall Lines on plan Sheet S2. Lettered Wall
Lines are generally identified from the front to the rear of the building and Numbered Wall Lines start at
the left and continue to the right (STANDARD PLAN) For reversed plans Lettered Wall Lines remain
the same and the Numbered Wall Lines start at the right of the plan (REVERSED PLAN) The
overhead garage door can be placed on Lines A, C or 3 On garage walls where the overhead garage
door is not located a mandoor and 4 foot window can be added without requiring additional
enaineerina.
Revised
6/17/2008
4
to
N
HiLine Homes, Inc. Page 6 of 37
MAIN FLOOR
PLAN 1768b
NTS
I A
-i u
miaow
34•-r
MIER RrOOR
Q
er
N
STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Printed
10/20/2008
A. Abrous, Ph D P E HiLine Homes, Inc.
TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
Maximum Applied Shear per Tables I or J (Ib)
Wall length under maximum applied shear per Tables I or J (ft)
Minimum number of anchor bolts when installed at 48 -in o c. minimum 2 anchors /mudsill
Maximum anchor bolt Load 48 -in o c. minimum 2 anchors per mudsill (Ib)
Allowable anchor bolt load for 1 /2 -in dia ASTM A307 bolts with 6 -in embedment 944 -lb
Install 1 /2 -in dia. ASTM A307 anchor bolts and washer per code 48 -in o c., minimum 6 -in
embedment in concrete and maximum 12 -in from end of mudsills with minimum 2 anchors per
mudsill
Revised
6/17/2008
STRUCTURAL SPECIFICATIONS
LOWER LEVEL HOUSE
Page 7 of 37
8,263
32
10
826
944
Wall Line B
Maximum overturning tension due to wind load per Table I (Ib) I 2,041
Maximum overturning tension due to seismic load per Table J (Ib) 885
Allowable tension load for Simpson LTT2OB Tension Ties is 1 750 -lb I 1 750
Basic allowable shear for 8d nails 68 -lb per 2005 NDS Table 11R. Adjustment 1 6 for 10
minute wind /seismic loads per 2005 NDS Table 2 3.2. Allowable shear load is (1 6)(68) =109
lb per nail Allowable tension for 4 0 -ft long shearwall nailed to mudsill at 6 -in o c. is T
1 /2(Nnail)(FNail) 1/2(48/6 +1)(1 6)(68)= 490 -Ib
Basic allowable static tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ stainless steel
Anchor (KB -TZ) embedded a minimum of 2 -in into 3 000 -psi cracked concrete 1 617 -lb
Adding the effect of mudsill nailing yields a total tension load of 1 617 +490 2 107 -lb
Basic allowable seismic tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ Anchor (KB -TZ)
embedded a minimum of 2 0 -in into 3 000 -psi cracked concrete 1 328 -lb Adding the
effect of mudsill nailing yields a total tension of 1 328 +490 =1 818 -lb
For each shearwall, install Simpson LTT2OB Tension Ties fastened to 3 -in framing with 10 -16d
nails. Fasten LTT2OB to concrete with 1 /2 -in x 7 -in Hilti Kwik Bolt TZ stainless steel anchor and
2x2x3/16 -in flat washers Embed anchors minimum of 2 -in into minimum 6 -in concrete stem
wall (Total of 2 Kwik Bolts and 2 LTT2OBs)
490
2,107
1 818
Wall Line D 4ft Shearwall Segment
Maximum overturning tension due to wind load per Table I (Ib) 1 373
Maximum overturning tension d to seismic Fla per I able J (Ib) I 506
Allowable tension load for Simpson LTT2OB Tension Ties is 1,750 -lb I 1,750
Basic allowable static tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ stainless steel
Anchor (KB -TZ) embedded a minimum of 2 -in into 3 000 -psi cracked concrete 1 617 -lb 1 617
STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Printed
10/20/2008
A. Abrous, Ph D P E. HiLine Homes, Inc.
TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
Basic allowable seismic tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ Anchor (KB -TZ) 1 328
embedded a minimum of 2.0 -in into 3 000 -psi cracked concrete 1 328 -lb
For the 4 -ft shearwall segment, install Simpson LTT2OB Tension Ties fastened to 3 -in framing
with 10 -16d nails. Fasten LTT2OB to concrete with 1 /2 -in x 7 -in Hilti Kwik Bolt TZ stainless steel
anchor and 2x2x3/16 -in flat washers. Embed anchors minimum of 2 -in into minimum 6 -in
concrete stem wall (Total of 8 Kwik Bolts and 8 LTT2OBs)
Wall Line D 6ft Shearwall Segment
Maximum overturning tension due to wind load per Table I (Ib)
Maximum overturning tension due to seismic load per Table J (Ib)
Basic allowable shear for 8d nails 68 -lb per 2005 NDS Table 11R. Adjustment 1 6 for 10
minute wind /seismic loads per 2005 NDS Table 2 3.2 Allowable shear load is (1 6)(68) =109
lb per nail. Allowable tension for 6 0 -ft long shearwall nailed to mudsill at 4 -in o c. is T
1 /2(Nnail)(FNail) 1/2(72/4 +1)(1 6)(68) =1 034 -lb
As shown on the plan, fasten OSB to mudsill with 8d nails at 4 -in o c.
Wall Line 1 (5 ft Shear Wall Segment)
Maximum overturning tension due to wind load per Table I (Ib) I 1. 640
Maximum overturning tension due to seismic load per I able J (Ib) I 449
Allowable tension load for Simpson LTT2OB Tension Ties is 1 750 -lb I 1 750
Basic allowable shear for 8d nails 68 -lb per 2005 NDS Table 11R. Adjustment 1 6 for 10
minute wind /seismic loads per 2005 NDS Table 2 3.2 Allowable shear load is (1 6)(68) =109
lb per nail Allowable tension for 5 0 -ft long shearwall nailed to mudsill at 6 -in o c. is T
1 /2(Nnail)(FNail) 1/2(60/6 +1)(1 6)(68)= 598 -lb
Basic allowable static tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ stainless steel
Anchor (KB -TZ) embedded a minimum of 2 -in into 3 000 -psi cracked concrete 1 617 -lb
Adding the effect of mudsill nailing yields a total tension load of 1 617 +598 2,215 -lb
Basic allowable seismic tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ Anchor (KB -TZ)
embedded a minimum of 2 0 -in into 3 000 -psi cracked concrete 1 328 -lb Adding the
effect of mudsill nailing yields a total tension of 1 328 +598 =1 926 -lb
For each shearwall, install Simpson LTT2OB Tension Ties fastened to 3 -in framing with 10 -16d
nails. Fasten LTT2OB to concrete with 1 /2 -in x 7 -in Hilti Kwik Bolt TZ stainless steel anchor and
2x2x3/16 -in flat washers Embed anchors minimum of 2 -in into minimum 6 -in concrete stem
wall (Total of 2 Kwik Bolts and 2 LTT2OBs)
UPPER LEVEL HOUSE
Wall Line B (Upper Level) (Perforated Shear Wall)
Maximum overturning tension due to wind load per Table I (Ib) 792
Maximum overturning tension uc�e to seismic of per I able J (Ib) 537
Maximum shear (V) on Wall Line B per Tables I or J (Ib) 2,836
Shear Wall Clear Height (ft) 8
Maximum. Opening Height (ft) 4 0,
Revised
6/17/2008
STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Page 8 of 37
1,058,
I 191
1 034
598
2,215
1 926
Printed
10/20/2008
A. Abrous, Ph D P E HiLine Homes, Inc.
TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
Percentage of Full- Height sheathing
Ratio of Maximum Opening Height to Wall Clear Height
Shear Resistance Adjustment Factor (C per 2005 NDS Table 4 3
Sum of Perforated Shear Wall Segment Lengths (ft)
Design Shear Capacity of Wall (Ib)
CHECK IF SHEAR CAPACITY OF PERFORATED SHEAR WALL
Hold -Down Tension Load T Vh /COFLi (Ib)
At each end of the perforated shearwall attach main floor top
with 1 /2 -in threaded rod, 2 -in washer, and nut.
Revised
6/17/2008
OPTIONAL GARAGE
SHEAR WALL SHEATHING SPECIFICATIONS
STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Page 9 of 37
56 0
05
34
IS ADEQUATE
plates to upper floor bottom plate
0 82
19
5,687
YES
1 456
Wall Lines A C (Standard /Optional Garage Door Locations)
Maximum overturning tension due to wind load per Table 1(lb) I 2,245
Maximum overturning tension due to seismic load per Table J (Ib) I 801
Allowable load for Simpson STHD10 Strap Ties is 3 730 -lb I 3 730
Where shown on the plan and where the overhead garage door is located, install Simpson
STHD10 Strap Tie Holdowns per standard specification (total of 4 STHD10s)
Wall Line 3 (Optional Garage Door Location)
Maximum overturning tension due to wind load per Table 1(lb) 1 341
Maximum overturning tension due to seismic load per Table J (Ib) 637
Allowable tension load for Simpson LTT2OB Tension Ties is 1 750 -lb 1 750
Basic allowable static tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ stainless steel
Anchor (KB -TZ) embedded a minimum of 2 -in into 3 000 -psi cracked concrete 1 617 -lb
Basic allowable seismic tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ Anchor (KB -TZ)
embedded a minimum of 2 0 -in into 3 000 -psi cracked concrete 1 328 -lb
1 617
1 328
ALL WALL LINES (Except Garage /House Separation Wall)
Maximum resistive unit wind shear load per Table I (lb /ft) J 342
Maximum resistive unit seismic shear load per Table J (Ib /ft) J 194
Basic allowable shear for wind loads 785 -lb /ft per NDS Table 4 3A for 8d nails 6 -in
o.c. on edges, 12 -in o c. in the field framing 16 -in o c. per Note b Adjustments 0 50 365
for ASD and 0 93 for Hem -Fir framing Allowable shear (0 50)(0 93)(785) 365 -lb /ft.
Basic allowable shear for seismic loads 560 -Ib /ft per NDS Table 4 3A for framing 16 -in
o c. per Note b Adjustments are 0 50 for ASD and 0 93 for Hem -Fir framing Allowable
shear (0 50)(0 93)(560) 260 -Ib /ft.
260
Printed
10/20/2008
A. Abrous, Ph D P E. HiLine Homes, Inc.
Page 10 of 37
TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
Apply 7/16 -in OSB wood structural panels to 3 -in nominal Hem -Fir framing members with 8d
nails staggered 6 -in o c. on panel edges, 12 -in o c. in the field, and all edges blocked with 3-
in nominal framing per standard specification
Wall Line 2 (Garage /House Separation Wall Interior GWB)
Maximum resistive unit wind shear load per Table I (lb /ft) 285
Maximum resistive unit seismic shear load per Table J (lb /ft) I 149
Basic allowable unit shear for wind loads 320-1b/ft. Adjustment Factor (AF) for ASD is 320
0 50 Allowable shear (2)(0 50)(320) 320- lb /ft.
Basic allowable unit shear for seismic loads with flat metal strap bracing 320 -lb /ft for
framing 16 -in o c. Adjustment factors for ASD is 0 50 and seismic response 198
modification coefficient (R =4) GWB sheathing per IBC Table 1617 7 2 4/6 5 0 62
Allowable shear (2)(0 50)(0 62)(320) 198 -lb /ft.
Fasten Simpson WB106 Wall Bracing to framing members per standard specification and
maufacturer's instructions Fasten 1 /2 -in GWB drywall panels to both sides of Hem -Fir framing
members per standard specification
Revised
6/17/2008
SHEAR TRANSFER SPECIFICATIONS
LOWER LEVEL HOUSE
All Wall Lines
Fasten double top plates together with 10d nails 12 -in o c. and 6 -in o c. at splices. Overlap
splices 4 -ft. minimum Fasten OSB wall sheathing between shear wall segments at same
fastener spacing as on shear walls.
Fasten OSB panels to mudsills with minimum 8d nails 6 -in o c.
Lap bottom of Upper Level OSB panels 3 /4 -in onto Main Level wall top plates and fasten with
8d nails 6 -in o c. per Floor -to -Floor Connection details 4 Sheet S5
UPPER LEVEL HOUSE and GARAGE
All Wall Lines
Fasten double top plates together with 10d nails 12 -in o c. and 6 -in o c. at splices. Overlap
splices 4 -ft. minimum Fasten OSB wall sheathing between shear wall segments at same
fastener spacing as on shear walls.
Fasten OSB panels to mudsills with minimum 8d nails 6 -in o c.
Wall Lines 1, 2 3 (Gables)
Maximum applied unit wind shear load per Table I (lb /ft) 108
Maximum applied unit seismic shear load per Table J (lb/ft) 70
Allowable single shear load for 10d nails with nominal 2X side member 163 -Ib /nail Total
allowable shear transfer load for 2 -10d common toenails 16 -in o c. 203
2(0 83)(12/16)(1 6)(122)= 203 -lb
STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Printed
10/20/2008
A. Abrous, Ph D P E.
TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
Fasten gable -end trusses to double top plates with 2 -10d toenails 16 -in o c. or 1 -10d nail 8-
in o.c.
Wall Lines A, B, C D (Eaves)
Maximum resistive unit wind shear load per Table 1 (lb /ft)
Maximum resistive unit seismic shear load per Table J (lb /ft)
See Roof Framing Specification for truss connections and blocking
Fasten per Roof Framing Specification for truss connections and blocking
Roof Sheathing
Maximum applied unit wind shear per Table I (lb /ft) I 258
Maximum applied unit seismic shear per Table J (lb /ft) I 135
Basic allowable unit shear for wind /seismic loads 645/460 -lb /ft per NDS Table 4.2B for
7/16 -in unblocked panel diaphragms Adjustment factor (AF) for ASD 0 5 Adjusted 323/230
allowable unit shear (0 50)(645/460) 323/230- lb /ft.
Allowable snow (live) load for 7/16 -in APA Span Rated 24/16 with supports 24 -in o c per 40
APA Table 25 40 psf
Allowable snow (live) load for 15/32 -in APA Span Rated 32/16 with supports 24 -in o c. per 75
APA Table 25 70 psf
Up to 40 -psf ground snow load, install 7/16 -in unblocked APA Span Rated 24/16 panels to
engineered trusses 24 -in o c. per IBC Case 1 Fasten with 8d nails 6 -in o c. on supported
edges and 12 -in o c. in the field Install 1 /2 -in panel edge clips midway between each support.
See truss blocking and boundary nailing for additional requirements. Beyond 40 -psf ground
snow load, use 15/32 -in panels instead Beyond 70 -psf snow load, use 19/32 -in sheathing
Truss Blocking Boundary Nailing
Fasten 2X4 vent blocking in each truss bay with 1 -10d toenail into truss, each side Fasten roof
diaphragm to blocking with 8d nails 6 -in o c.
Maximum applied unit shear per Tables G C1/ (lb /ft). I 165
Allowable load for 2 -10d common toenails (2)(0 83)(1 6)(102) 271 -lb per truss end
Allowable load for H2.5A Seismic HurricaneTies 110 -lb per truss end for Hem -Fir Total 381
allowable load per truss end 271 110 381 -lb per truss end 381 -lb /ft.
Fasten truss tails to top plates with 2 10 toenails and a Simpson Seismic Hurricane Tie
fastened to truss and top plates per manufactures instructions. (see sheet S3, Roof Framing
Plan)
Truss Connections (Uplift Loads)
Maximum net uplift on truss °connection per Table K (lb)
Allowable uplift for H10A Seismic Hurricane Ties 1 015 -lb for Hem -Fir framing
Revised
6/17/2008
HiLine Homes, Inc. Page 11 of 37
Truss Connections (Lateral Loads)
STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
89
103
-731'
1,015
Printed
10/20/2008
A. Abrous, Ph D P E. HiLine Homes, Inc.
TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
Truss Chord Splice Nailing
Maximum applied chord tension load per Table K, C T M/b v /b8 (Ib). I 629
Allowable chord splice tension load for 10d nails 6 -in o c. I 1 306
Fasten exterior wall top plate splices together with 10d nails 6 -in o c. Minimum splice length
48 -in
Revised
6/17/2008
STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Page 12 of 37
Printed
10/20/2008
A. Abrous, Ph D P E.
HiLine Homes, Inc.
TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
STANDARD SPECIFICATIONS ALLOWABLE LOADS
Basic allowable single shear for fastening 1 5 -in Hem -Fir framing to concrete with 1 /2 -in dia.
ASTM A307 bolts with minimum 6 -in embedment 590 -lb per 2005 NDS Table 11E.
Adjustment for 10- minute wind /seismic loads 1 6 per 2005 NDS Table 2 3.2. Allowable
shear load (1 6)(590) 944 -lb
Basic allowable single shear for fastening Hem -Fir framing to concrete with 1 /2 -inX8 5 -in
long Simpson Wedge -All wedge anchors in minimum 2 500 -psi concrete with 4 5 -in
embedment 1 763 -lb Adjustments for no special inspection 0 50 for 3 -in edge distance
0 53 and for wind /seismic loads 1 33 Allowable load (0.50)(0.53)(1.33)(1,763) 621
Basic allowable single shear for fastening Hem -Fir framing to concrete with 1 /2 -in Simpson
Titen HD anchors in minimum 2,500 -psi concrete with 4.25 -in embedment 2,673 -lb
Adjustments for 3 -in edge distance 0 43 and for 10- minute wind /seismic loads 1 33
Allowable load (0.43)(1.33)(2,673) 1,529 -lb.
Revised
6/17/2008
r
HOLD -DOWNS
Hilti Kwik Bolt TZ Carbon Steel
STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Page 13 of 37
944
621
1 529
Simpson STHD8 /10 Strap Ties
Install Simpson STHD8 Strap Tie Holdowns in minimum 2 500 -psi concrete and 6 -in minimum stem
wall Fasten STHD8s to 3 -in framing members with 24 -16d sinkers
Allowable tension load for Simpson STHD8 Strap Ties is 2 370 -lb for minimum 2 500 -psi 2,370
concrete
Install Simpson STHD10 Strap Tie Holdowns in minimum 2 500 -psi concrete and 6 -in minimum stem
wall Fasten STHD1Os to 3 -in framing members with 28 -16d sinkers
Allowable tension load for Simpson STHD10 Strap Ties is 3 730 -lb for 2 500 -psi concrete I 3 730
SimpsonTiten HD or Wedge All Anchor With Simpson LTT2OB
Install Simpson LTT2OB Tension Ties fastened to 3 -in framing with 10 -16d nails Fasten LTT2OB to
concrete with 1 /2 -in x 8 -in Simpson Titen HD anchors and 2x2x3/16 -in flat washers Embed anchors
4 125 -in into minimum 6 -in concrete stem wall
Allowable tension load for Simpson LTT2OB Tension Ties is 1 750 -lb I 1 750
Basic allowable tension load for 1 /2 -in x 8 -in long Simpson Titen HD anchors embedded 3 9-
in to concrete 2 186 -lb Adjustments are 0 50 for no special inspection, 0 80 for 2 75 -in
edge distance and 1 33 for wind /seismic loads Allowable load 1 163
(0 5)(0.80)(1.33)(2,186) 1,163 -lb.
Basic allowable tension load for 1 /2 -in x 8 -in long SimpsonWedge All anchors embedded 4 5
in into 2,500 -psi concrete 2,045 -lb Adjustments are 0 50 for no special inspection, 0 80 1 088
for 2.75 -in edge distance and 1 33 for wind /seismic loads. Allowable load
(0.5)(0.80)(1.33)(2,045)=1,088-lb.
Printed
10/20/2008
A. Abrous, Ph D P E. HiLine Homes, Inc.
Revised
6/17/2008
STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Page 14 of 37
TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
Install Simpson LTT2OB Tension Ties fastened to 3 -in framing with 10 -16d nails Fasten LTT2OB to
concrete with 1 /2 -in x 7 -in Hilti Kwik Bolt TZ stainless steel anchor and 2x2x3/16 -in flat washers.
Embed anchors minimum of 2 -in into minimum 6 -in concrete stem wall
Basic allowable static tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ stainless steel
Anchor (KB -TZ) embedded a minimum of 2 -in into 3 000 -psi cracked concrete 1 617 -lb
Basic allowable seismic tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ Anchor (KB -TZ)
embedded a minimum of 2 0 -in into 3 000 -psi cracked concrete 1 328 -lb
Shear Wall Nailing Into Mudsill
Fasten OSB panels to mudsill with 8d nails 6 -in o.c
Basic allowable single shear load for 8d nails and Hem -Fir framing 68 -lb per NDS Table
110 Adjustment for 10- minute wind /seismic loads 1 6 per NDS Table 2.3.2 Allowable
shear load (1 6)(68) 109 -Ib /nail Allowable shear wall overturning load for 4 -ft panels
fastened with one row of 8d nails 6 -in o c. (1/2)(48/6 1)(68)(1 6) 490 -lb
Fasten OSB panels to mudsill with 8d nails 6 4 -in o.c.
Basic allowable single shear load for 8d nails and Hem -Fir framing 68 -lb per NDS Table
11Q Adjustment for 10- minute wind /seismic loads 1 6 per NDS Table 2.3.2 Allowable
shear load (1 6)(68) 109 -Ib /nail Allowable shear wall overturning load for 4 -ft panels
fastened with one row of 8d nails 4 -in o c. (1/2)(48/4 1)(68)(1 6) 707 -lb
Fasten OSB panels to mudsill with 8d nails (a. 3 -in o.c
Basic allowable single shear load for 8d nails and Hem -Fir framing 68 -lb per NDS Table
110 Adjustment for 10- minute wind /seismic loads 1 6 per NDS Table 2 3.2 Allowable
shear load (1 6)(68) 109-lb/nail Allowable shear wall overturning load for 4 -ft panels
fastened with one row of 8d nails 3 -in o c (1/2)(48/3+ 1)(68)(1 6) 925 -lb
Nails (Per 2005 NDS Tables 11N and 2.3.2)
Single shear for 8d common (0 131 -in) with 1 5 -in thickness Hem -Fir side members
Basic allowable shear for 8d common nails 84 -lb Adjustment for 10- minute wind /seismic
loads 1 6 Allowable shear load (1 6)(84) 134 -lb
Single shear forlOd common (0 148 -in) with 1 5 -in thickness Hem -Fir side members.
Basic allowable shear for 10d common nails 102 -lb Adjustment for 10- minute
wind /seismic loads 1 6 Allowable shear load (1 6)(102) 163 -lb
Single shear for 10d common toenails (0 148 -in) with 1 5 -in thickness Hem -Fir side members
(0 83)(163) 135 -lb
1 617
1 328
490
707
925
134
163
135
OSB Shear Wall Panels Per 2005 NDS Table 4 3A)
Basic allowable shear for wind loads 785 -lb /ft per NDS Table 4 3A for 8d nails 6 -in
o.c. on edges, 12 -in o c. in the field framing 16 -in o c. per Note b Adjustments 0 50 365
for ASD and 0 93 for Hem -Fir framing Allowable shear (0 50)(0 93)(785) 365 -lb /ft.
Basic allowable shear for wind loads 1,205 -lb /ft per NDS Table 4 3A for 8d nails
staggered 4 -in o.c. on edges, 12 -in o c. in the field framing 16 -in o c. per Note b 560
Framing on panel edges is 3 -in nominal Adjustments are 0 50 for ASD and 0 93 for Hem
Fir framing Allowable shear (0 50)(0 93)(1,205) 560 -lb /ft.
Printed
10/20/2008
A. Abrous, Ph D P E HiLine Homes, Inc.
Revised
6/17/2008
SHEAR TRANSFER SPECIFICATIONS
Nails
STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Page 15 of 37
TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS
Basic allowable shear for seismic loads 560 -lb /ft per NDS Table 4 3A for framing 16 -in
o c. per Note b Adjustments are 0 50 for ASD and 0 93 for Hem -Fir framing Allowable
shear (0 50)(0 93)(560) 260- lb /ft.
Basic allowable shear for seismic loads 860 -lb /ft per NDS Table 4 3A for 8d nails
staggered 4 -in o.c. on edges, 12 -in o c. in the field framing 16 -in o c. per Note b
Framing on panel edges is 3 -in nominal Adjustments are 0 50 for ASD 0 93 for Hem -Fir
framing Allowable shear (0 50)(0 93)(860) 400- lb /ft.
GWB Shear Wall Panels Per 2005 NDS Table 4.3B)
Fasten 1 /2 -in GWB panels to both sides of wall with No 6 X 1.25 -in long Type S or W drywall screws
4 -in o c. on edges and in the field with all edges blocked Minimum framing material is Hem -Fir
with maximum spacing of studs 16 -in o c.
Basic allowable unit shear for wind loads 320-1b/ft. Adjustment Factor (AF) for ASD is
0 50 Allowable shear (2)(0 50)(320) 320 -1b /ft.
Basic allowable unit shear for seismic loads without flat metal strap bracing 320 -lb /ft
for framing 16 -in o c. Adjustment factors for ASD is 0 50 and seismic response
modification coefficient (R =2) GWB sheathing per IBC Table 1617 7 2 2/6 5 0 30
Allowable shear (2)(0 50)(0 30)(320) 96- lb /ft.
Basic allowable unit shear for seismic loads with flat metal strap bracing 320 -Ib /ft for
framing 16 -in o c. Adjustment factors for ASD is 0 50 and seismic response
modification coefficient (R =4) GWB sheathing per IBC Table 1617 7.2 4/6 5 0 62.
Allowable shear (2)(0 50)(0 62)(320) 198- lb /ft.
260
400
320
96
198
Basic allowable load for 10d common nails fastened with 1 5 -in side members 102 -lb per
NDS Table 11N Adjustment for 10- minute wind /seismic loads 1 6 Allowable load 163
(1 6)(102) 163 -lb
Basic allowable load for 8d common nails fastened to minimum 3 /4 -in side members 73 -lb
per NDS Table 11N Adjustment for 10- minute wind /seismic loads 1 6 Allowable load 117
(1 6)(73) 117 -lb
Toenails
Allowable load for 10d common toenails 12 -in o c. (0 83)(1 6)(102) 135- lb /ft. I 135
Allowable load for 2 -10d common toenails 16 -in o c. (0 83)(2)(12/16)(1 6)(102) 203- 203
lb /ft.
Ladder Blocking
Place 2X framing members laid flat on wall perpendicular to truss bottom chords at approximately
equal spacing Fasten blocking to top plate with 4 -10d nails Fasten each end of blocking to truss
bottom chord with 2 -10d nails
Allowable shear load per ladder block (4)(0 93)(1 6)(102) 607 -lb I 607
Printed
10/20/2008
A. Abrous, Ph.D P.E.
Description
BUILDING DIMENSIONS
Transverse Width of Building (ft) -1 FL
Longitudinal Length of Building (ft) 1s Fl.
Roof Slope (6/12)
Length of Gable -End Roof Overhang (ft)
Length of Eave -End Roof Overhang (ft)
Maximum Truss Span (Eave -Eave) (ft)
MAIN FLOOR DIMENSIONS
Wall Height (ft)
Transverse Exterior Walls Length (ft)
Longitudinal Exterior Walls Length (ft)
Transverse Partitions Length (ft)
Longitudinal Partitions Length (ft)
UPPER FLOOR DIMENSIONS
Wall Height (ft)
Transverse Exterior Walls Length (ft)
Longitudinal Exterior Walls Length (ft)
Transverse Partitions Length (ft)
Longitudinal Partitions Length (ft)
OPTIONAL GARAGE DATA
Transverse Width (ft)
Longitudinal Length (ft)
Transverse Exterior Walls Length (ft)
Longitudinal Exterior Walls Length (ft)
Maximum Truss Span (Eave -Eave) (ft)
Maximum Ground Snow Load, p (psf)
Exposure Factor, Ce
Thermal Factor C
Snow Importance Factor,
Slope Factor C
Flat Roof Snow Load, pf (psf)
Sloped Roof Snow Load, ps (psf)
Revised
9/3/2008
HiLine Homes, Inc. Page 16 of 37
TABLE B BUILDING DATA
Value
26.0
34.0
05
10
13
26 0
7.8
52 0
68 0
38 0
29 0
8.8
52 0
68 0
60 0
30 0
24 0
22.0
48 0
44 0
24 0
Description
BUILDING INERTIAL DATA
Roof Diaphragm Dead Load (psf)
Exterior Walls Dead Load (psf)
Partition Walls Dead Load (psf)
Transverse Width of Building (ft) 2 Fl.
Longitudinal Length of Building (ft) 2n Fl
Least horizontal Building Dimension b (ft)
0 4 Mean Building Height (ft)
0 1 *b (ft)
End Zone Dimension, a (ft)
Adjusted End Zone Dimension a (ft)
Length of End Zone, 2a (ft)
BUILDING DATA
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Value
15
15
10
26.0
34.0
MEAN AND MAXIMUM BUILDING HEIGHTS
Roof Height (ft) 16 6
Mean Height (ft) 19 9
Maximum Height (ft) 23 1
CALCULATION OF LENGTH OF END ZONE, 2a
26 0
7 94
2.6
2.6
30
60
BUILDING /GARAGE ENCLOSED AREAS
Building Enclosed Area (sf) Main Floor 884 0
Building Enclosed Area (sf) Second Floor 884 0
Optional Garage Enclosed Area (sf) 528 0
SNOW DATA
Assumed I 30.0
IASCE 7 -05 Table 7 -2, for Exposure C I 1 0
IASCE 7 -05 Table 7 -3, for Residences I 1 0
IASCE 7 -05 Table 7 -4, for Category II 1 0
IASCE 7 -05 Figure 7 -2a I 1 0
IASCE 7 -05 Equation 7 -1 p 0 7 C C I F 21 0
1Sooped Roof Snow Load C pf) I 21 0
Note Width is measured perpendicular to the wind direction and length parallel to the wind direction
Printed
10/20/2008
A. Abrous, Ph.D., P.E
Description
Wind Input Data
Basic Wind Speed V3s (mph)
Wind Exposure Category
Simplified Method per ASCE 7 6 4
Importance Factor IW
Exposure Height Factor, A (1st Floor)
Topographical Factor, Kzt
Exposure Height Factor, A (2nd Floor)
Design Wind Pressures (psf)
A End Zone of Wall
B End Zone of Roof
C Interior Zone of Wall
D Interior Zone of Roof
E End Zone of Windward Roof
F End Zone of Leeward Roof
G Interior Zone of Windward Roof
H Interior Zone of Leeward Roof
Eo End Zone of Windward OVHG Roof
Go Interior Zone of Windward OVHG Roof
GARAGE
TRANSVERSE Garage Zone Data
Horizontal Wind Force Loading
Transverse Zones A and B Width (ft)
Transverse Zones C and D Width (ft)
Transverse Zones A C Height (ft)
Transverse Zones B D Height (ft)
Vertical Wind Force Loading
Transverse Roof Zones E F Width (ft)
Transverse Roof Zones G H Width (ft)
Transverse Roof Zones E F Length (ft)
Transverse Roof Zones G H Length (ft)
LONGITUDINAL Garage Zone Data
Horizontal Wind Force Loading
Transverse Zones A Width (ft)
Transverse Zones C Width (ft)
Transverse Zones A Height (ft)
Transverse Zones C Height (ft)
Vertical Wind Force Loading
Transverse Roof Zones E F Width (ft)
Transverse Roof Zones G H Width (ft)
Transverse Roof Zones E F Length (ft)
Transverse Roof Zones G H Length (ft)
HiLine Homes, Inc. Page 17 of 37
TABLE C WIND DESIGN CRITERIA
Valued Description
MAIN FLOOR
1201 TRANSVERSE Building Zone Data
CI Horizontal Wind Force Loading
YesITransverse Zones A B Width (ft)
1 00ITransverse Zones C D Width (ft)
1.21 Transverse Zones A C Height (ft)
1 00ITransverse Zones B D Height (ft)
1.29 LONGITUDINAL Building Zone Data
Horizontal Windforce Loading
Longitudinal Zone A Width (ft)
Longitudinal Zone C Width (ft)
Longitudinal Zone A Height (ft)
Longitudinal Zone C Height (ft)
28 6
46
20 7
47
-12.7
-17 3
-9.2
-139
-23 7
-20.2
60
160
78
60
60
160
120
120
60
180
93
11 3
60
180
11 0
11 0
UPPER FLOOR
TRANSVERSE Building Zone Data
Horizontal Wind Force Loading
Transverse Zones A B Width (ft)
Transverse Zones C D Width (ft)
Transverse Zones A C Height (ft)
Transverse Zones B D Height (ft)
Vertical Windforce Loading
Transverse Roof Zones E F Width (ft)
Transverse Roof Zones G H Width (ft)
Transverse Roof Zones E F Len th ft
Transverse Roof Zones G H Length (ft)
LONGITUDINAL Building Zone Data
Horizontal Windforce Loading
Longitudinal Zone A Width (ft)
Longitudinal Zone C Width (ft)
Longitudinal Zone A Height (ft)
Longitudinal Zone C Height (ft)
Vertical Windforce Loading
Longitudinal Roof Zones E F Width (ft)
Longitudinal Roof Zones G H Width (ft)
Longitudinal Roof Zones E G Length (ft)
Longitudinal Roof Zones F H Length (ft)
Value
60
28 0
78
0.0
60
20 0
7.8
7.8
60
28 0
8.8
65
60
28 0
130
130
60
20 0
103
12.6
60
20 0
170
170
Note Width is measured perpendicular to the wind direction and length parallel to the wind direction
Revised
9/3/2008
WIND DESIGN CRITERIA Printed
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 10/20/2008
A. Abrous, Ph.D., P E
Description
SEISMIC GROUND MOTION VALUES AND SITE SPECIFICATIONS
Building Occupancy Category
Seismic Importance Factor IE
Default Seismic Site Classification
Seismic Design. Category
Response Modification Coefficient, R
Building Period Parameter C
Redundancy Factor p
Site Short Period Design Acceleration, SDS (g)
Mapped MCE Long Period Acceleration, S (g)
Ground Snow Load (psf)
Flat Roof Snow Load (psf)
Mean Building Height, h (ft)
Building Period T Cth314 (sec)
Site Long Design Period Acceleration SDI (g)
T 0.2 *S /S (sec)
T SD1 /SDs (sec)
Is Period T T T
Is Design Spectral Response S SDs?
Use of Equivalent Lateral Force Procedure?
Revised
9/3/2008
HiLine Homes, Inc. Page 18 of 37
TABLE D SEISMIC DESIGN CRITERIA
Reference /Calculation
ASCE Standard 7, Table 1 -1
ASCE Standard 7, Table 11 5 -1
ASCE Standard 7 Table 20.3 -1
IRC Table R301.2.2.1 1
ASCE Standard 7 Table 12.2-1
ASCE Standard 7 Table 12.8 -2
ASCE Standard 7 Section 12.3 4.2
IRC Table, R301.2.2.1 1 for SDC D2
ASCE Standard 7 Figure 22 -2
Building Department
Calculation, Table B
COMPUTATION OF DESIGN RESPONSE SPECTRUM DATA
'Per Plan (Calculated in Table B)
IASCE Standard 7, Section 12 8 2 1
IASCE Standard 7 11 4 4 SDI 2/3SM1
IASCE Standard 7 Section 11 4 5
IASCE Standard 7 Section 11 4 5
Value
I II
10,
I D
D2
6.5
0 02
I.1 000
I 1 170
I 0.600
I 30.0
I 21.0
I 199
1 0188
I 0 400
I 0 068
1 0.342
CHECK FOR VALIDITY OF USE OF "EQUIVALENT LATERAL FORCE PROCEDURE"
IASCE Standard 7 Section 11 4 5
IASCE Standard 7 Section 11 4 5
IASCE Standard 7, Section 12.8
COMPUTATION OF SEISMIC DESIGN COEFFICIENT
Seismic Design Coefficient: Cs SDS *IE /R IASCE Standard 7 Section 12 8 1 1
SEISMIC DESIGN CRITERIA
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
I Yes
I Yes
I. Yes
I 0 180
Printed
10/20/2008
A. Abrous, Ph.D., P E.
Zone
Transverse Wall Zone A
Transverse Roof Zone B
Transverse Wall Zone C
Transverse Roof Zone D
Transverse Wall Zone A
Transverse Wall Zone C
Transverse Roof Zone E
Transverse Roof Zone F
Transverse Roof Zone G
Transverse Roof Zone H
Roof Overhang Zone E
Roof Overhang Zone F 1
Roof Overhang Zone G
Roof Overhang Zone H
Longitudinal Roof Zone E
Longitudinal Roof Zone F
Longitudinal Roof Zone G)
Longitudinal Roof Zone H
Revised
9/3/2008
TABLE E-
Wind
Pressure
(psf)
1 WIND LOADS (HOUSE)
HiLine Homes, Inc. Page 19 of 37
TRANSVERSE HOUSE WIND LOADING
UPPER LEVEL Horizontal Wind Loads
28 61 601 881 528
4 61 6 01 6 51 39 0
20 71 28 01 881 2464
471 2801 651 182.0
UPPER LEVEL Lateral Force /Moment
MAIN LEVEL Horizontal Wind Loads
28.61 6.01 7.81 46.8
20 71 28.01 7.81 218.4
MAIN LEVEL Lateral Force /Moment
TOTAL TRANSVERSE LATERAL FORCE /MOMENT
Vertical Wind Loads
-12 7
-17 3
-9 2
13 9
-23 7
-17 3
20 2
-13 9
-12.71
17 31
-9.21
-13 91
Zone Zone
Width Ht. /Leng
(ft) (ft)
60
60
28 0
28 0
60
60
28 0
28 0
Uplift Force and Overturning Moment on Building
Total Overturning Moment Due to Transverse Wind Loading
Unit Uplift on Building (psf)
LONGITUDINAL HOUSE WIND LOADING
UPPER LEVEL Horizontal Wind Loads
Longitudinal Wall Zone Al 28 61 6 0 10 31 61 81
Longitudinal Wall Zone C 20 71 20 0 12 61 251 51
UPPER LEVEL Lateral Force /Moment
MAIN LEVEL Horizontal Wind Forces
Longitudinal Wall Zone AI 28.61 6.01 7.81 46.81
Longitudinal Wall Zone CI 20 71 20 01 7.81 1561
MAIN Lateral Force /Moment
Total Lateral Force /Moment
Vertical Wind Loads
601
601
20 01
20 01
130
130
130
130
13
13
13
13
01
01
1701
01
Zone
Area
(sf)
78 0
78 0
364 0
364 0
80
80
37.2
37.2
102.01
102.01
340 01
340 01
Zone
Force
(lb) (ft)
1 948
231
6 580
1 103
5,599
1,620
5,470
7,809
13,407
WIND LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
-1,278 19 5
1 741 6 5
-4 320 19 5
-6 527 6 5
-244 26 7
178 -0 7
970 26 7
-668 -0 7
15,926
-18.0
2,2801
6 7161
5,672
1,6201
5,0401
6,6541
12,3261
1,6711
-2,2761
-4 0351
-6 0971
Moment Moment
Arm
(ft-lb)
12.2
16.6
12.2
16.6
39
39
391
391
2551
851
25 51
851
23 766
3 842
80,271
18 318
126,196
6,316
21,334
27,650
153,847
24 919
11 315
84,239
42 425
6 506
-118
25 876
-444
194,716
320,912
29 527
94 609
124,136
6,316
19,658
25,974
150,110
42,612
19 349
102,896
51 821
Printed
10/20/2008
A. Abrous, Ph D., P E
Roof Overhang Zone E
Roof Overhang Zone F 1
Roof Overhang Zone G
Roof Overhang Zone H
Revised
9/3/2008
-23 71
-17 31
-20.21
-13 91
HiLine Homes, Inc. Page 20 of 37
601
601
20 01
20 01
1 01
101
1 0
1 01
60
60
20 0
20 0
Uplift Force and Overturning Moment on Building
Total Overturning Moment Due to Longitudinal Wind Loads
Unit Uplift on Building (psf)
Note Plus and minus signs signify wind pressures acting toward and away from
ASCE Standard 7
-183
-134
521
359
15,276
-17.3
the surfaces,
WIND LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
34 5 6 329
05 67
34 51 17 980
0 51 -179
I 240,873
I 365,009
respectively per
Printed
10/20/2008
A. Abrous, Ph.D., P E.
Transverse
Transverse
Transverse
Transverse
Zone
Wall Zone A
Roof Zone B
Wall Zone C
Roof Zone D
Transverse Roof Zone E
Transverse Roof Zone F
Transverse Roof Zone G
Transverse Roof Zone H
Roof Overhang Zone E
Roof Overhang Zone F
Roof Overhang Zone G
Roof Overhang Zone H
Transverse Wall Zone A
Transverse Wall Zone C
Transverse Roof Zone E
Transverse Roof Zone F
Transverse Roof Zone G
Transverse Roof Zone H
Roof Overhang Zone E
Roof Overhang Zone F
Roof Overhang Zone G
Roof Overhang Zone H
Revised
9/3/2008
HiLine Homes, Inc. Page 21 of 37
TABLE E -2 WIND LOADS (GARAGE)
Wind Zone Zone
Pressure Width Ht. /Leng.
(psf) (ft) (ft)
TRANSVERSE WIND LOADING
Horizontal Wind Loads
28 61 601 781 468
461 60 601 360
20 71 160 781 1248
471 16 01 601 960
Lateral Force /Moment
Vertical Wind Loads
-12 7
17 3
-9.2
13 9
-23 7
-17 3
-20 2
-13 9
60
60
160
160
60
60
160
160
72.0
72.0
192.0
192.0
80
80
21 3
21 3
Zone
Area
(sf)
Uplift Force and Overturning Moment on Building
Total Overturning Moment Due to Transverse Wind Loading
Unit Uplift on Building (psf)
120
120
12.0
12.0
13
13
13
13
LONGITUDINAL WIND LOADING
Horizontal Wind Loads
2861 601 931 558
20 71 18 01 11 31 203 4
Lateral Force /Moment
Vertical Wind Loads
-127 60
173 60
-92 180
13 9 18 0
237 60
-173 60
20.2 18 0
-13 9 18 0
11 0 66 0
11 0 66 0
11 0 1980
11 0 198.0
10 60
10 60
1 0 180
1 0 180
Uplift Force and Overturning Moment on Building
Total Overturning Moment Due to Transverse Wind Loading
Unit Uplift on Building (psf)
Zone
Force
(lb)
1 620
200
3 126
546
3,119
-1 106
-1 507
2,137
-3,229
-229
167
520
-358
-9,254
-17.5
1 931
5 095
3,897
-1 014
-1 382
-2,204
-3 330
-172
126
-440
303
8,970
-17.0
WIND LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Moment
Arm
(ft)
Moment
(ft-lb)
3.91 6 316
7.81 1 563
3.91 12 191
7.81 4,258
24,329
18 0 19 916
6 01 9 043
18 0 38 472
60 19375
247 5644
-0 7 -111
247 12829
-0 7 -238
104,931
129,259
4.7 8 979
5.7 28 784
37,763
16 5 16 735
5 5 7 599
16 5 36 368
5 5 18 316
22 5 3 871
-0 5 -63
22.5 9 899
-0 5 -151
92,574
130,337
Printed
10/20/2008
A. Abrous, Ph D., P E
Zone
Transverse Wall Zone A
Transverse Roof Zone B
Transverse Wall Zone C
Transverse Roof Zone D
Transverse Wall Zone A
Transverse Wall Zone C
Transverse Roof Zone E
Transverse Roof Zone F
Transverse Roof Zone G
Transverse Roof Zone H
Roof Overhang Zone E
Roof Overhang Zone F
Roof Overhang Zone G
Roof Overhang Zone H
Longitudinal Wall Zone A
Longitudinal Wall Zone C
Longitudinal Wall Zone A
Longitudinal Wall Zone C
Longitudinal Roof Zone EI
Longitudinal Roof Zone F
Longitudinal Roof Zone GI
Longitudinal Roof Zone H
Revised
9/3/2008
HiLine Homes, Inc.
TABLE F -1 MINIMUM WIND LOADS (HOUSE)
Zone
Area
Wind Zone Zone
Pressure Width Ht. /Leng.
100!
l
01
10 0l
UPPER LEVEL Lateral Force /Moment
MAIN LEVEL Horizontal Wind Loads
10.01 6.01 7.81 46.8
10.01 28.01 7.81 218.4
MAIN LEVEL Lateral Force /Moment
TOTAL TRANSVERSE LATERAL FORCE /MOMENT
Vertical Wind Loads
78 0
78 0
364 0
364 0
80
80
37.21
37.21
Uplift Force and Overturning Moment on Building'
Total Overturning Moment Due to Transverse Wind Loading
Unit Uplift on Building (psf)I
00
00
00
00
00
00
00
00
6 0
601
28 01
28 01
60
60
28 0
28 0
60
60
28 0
28 0
8 8
651
881
6 51
130
130
130
130
13
13
13
13
52.8
39 0
246 4
182 0
Zone
Force
(psf) (ft) (ft) (sf) (lb)
TRANSVERSE HOUSE WIND LOADING
UPPER LEVEL Horizontal Wind Loads
528
390
2 464
1 820
3,706
468
2,184
2,822
6,528
0
0
0
0
0
0
0
0
0
0.0
LONGITUDINAL HOUSE WIND LOADING
UPPER LEVEL Horizontal Wind Loads
100 601 1031 618
100 20 01 1261 51
UPPER LEVEL Lateral Force /Moment
MAIN LEVEL Horizontal Wind Forces
10.01 6.0 7.81 46.81 4681
10.01 20.0 7.81 1561 1,5601
MAIN Lateral Force /Moment 2,1581
Total Lateral Force /Moment 4,1471
Vertical Wind Loads
0 01 601 17 01 102.01 01
001 601 17 01 102.01 01
001 200 17 01 34001 01
001 200 17 01 340 0 1 01
MINIMUM WIND LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
6181
2,5151
1,989
Moment
Arm
(ft)
Page 22 of 37
12.2
16.6
12.2
16.6
39
39
195
65
195
65
26 7
-0 7
26 7
-0 7
13 01
1411
1
391
391
1
1
2551
851
25 51
8.51
Moment
(ft-lb)
6 442
6,474
30 061
30,212
73,188
1,825
8,518
10,343
83,531
0
0
0
0
0
0
0
0
0
73,188
8 003
35 430
43,433
1,825
6,084
7,909
51,342
0
0
0
0
Printed
10/20/2008
A. Abrous, Ph.D P E
HiLine Homes, Inc. Page 23 of 37
Roof Overhang Zone E I 0 01 6 01 1 01 6 0 0
Roof Overhang Zone F I 0 01 6 01 1 01 6 0 0
Roof Overhang Zone G I 0 01 20 of 1 01 20 0 0
Roof Overhang Zone H I 0 01 20 01 1 01 20 0 0
Uplift Force and Overturning Moment on Building 0
Total Overturning Moment Due to Longitudinal Wind Loads
Unit Uplift on Building (psf) 0.0
Note Plus and minus signs signify wind pressures acting toward and away from the surfaces,
ASCE Standard 7
Revised
9/3/2008
MINIMUM WIND LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
34 5 0
-0 5 0
34 5 0
-0 5 0
0
43,433
respectively per
Printed
10/20/2008
A. Abrous, Ph.D., P E.
Transverse Wall Zone A
Transverse Roof Zone B
Transverse Wall Zone C
Transverse Roof Zone D
Transverse Roof Zone E
Transverse Roof Zone F
Transverse Roof Zone G
Transverse Roof Zone H
Roof Overhang Zone E
Roof Overhang Zone F
Roof Overhang Zone G
Roof Overhang Zone H
Transverse Wall Zone A
Transverse Wall Zone C
Transverse Roof Zone E 0 0
Transverse Roof Zone F 0 0
Transverse Roof Zone G 0 0
Transverse Roof Zone H 0 0
Roof Overhang Zone E 0 0
Roof Overhang Zone. 0 0
Roof Overhang Zone G 0 0
Roof Overhang Zone H 0 0
Revised
9/3/2008
Zone
Zone
Area
(sf)
TABLE F -2 MINIMUM WIND LOADS (GARAGE)
Wind Zone Zone
Pressure Width Ht. /Leng
(psf) (ft) (ft)
TRANSVERSE WIND LOADING
Horizontal Wind Loads
10 01 601 781 468
1001 601 601 360
1001 16 01 781 1248
1001 16 01 601 960
Lateral Force /Moment
Vertical Wind Loads
00 601 12.01 72.0
00 601 12.01 720
00 16 01 12.01 1920
0 0 16 01 12.01 192.0
00 60 1 31 80
00 60 131 80
00 1601 131 213
00 1601 131 213
Uplift Force and Overturning Moment on Building
Total Overturning Moment Due to Transverse Wind Loading
Unit Uplift on Building (psf)
HiLine Homes, Inc. Page 24 of 37
LONGITUDINAL WIND LOADING
Horizontal, Wind Loads
1001 601 931 558
10 01 1801 1131 2034
Lateral Force /Moment
Vertical Wind Loads
60
60
180
180
60
60
180
180
11 0
11 0
11 0
11 0
10
10
10
10
66 0
66 0
198 0
198 0
60
60
180
180
Uplift Force and Overturning Moment on Building
Total Overturning Moment Due to Transverse Wind Loading
Unit Uplift on Building (psf)
Zone
Force
(lb)
468
360
1,248
960
2,178
0
0
0
0
0
0
0
0
0
0.0
558
2,034
1,494
0
0
0
0
0
0
0
0
0
0.0
MINIMUM WIND LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Moment
Arm
(ft)
3.9
7.8
3.9
7.8
180
60
180
60
24 7
-0 7
24 7
-0 7
47
57
165
55
165
55
22.5
-0 5
22 5
-0 5
Moment
(ft-lb)
1 825
2 808
4 867
7 488
16,988
0
0
0
0
0
0
0
0
0
16,988
2,595
11 492
14,087
0
0
0
0
0
0
0
0
0
14,087
Printed
10/20/2008
A. Abrous, Ph.D., P.E.
Building Component
Upper level Roof Diaphragm Ceiling
20% of Flat Roof Snow Load 30 -psf
Transverse Exterior Walls
Longitudinal Exterior Walls
Transverse Partitions
Longitudinal Partitions
Second Level Floor Diaphragm
Transverse Exterior Walls
Longitudinal Exterior Walls
Transverse Partitions
Longitudinal Partitions
Revised
9/3/2008
Story
Roof R
2nd Floor
1st Floor
SUM
HiLine Homes, Inc. Page 25 of 37
TABLE G -1 SEISMIC LOADS (HOUSE)
SEISMIC SHEAR LOADS
Load Height/
(psf) Width Length (ft)
(ft)
UPPER LEVEL SEISMIC LOADS
15.0
00
150
150
100
100
88
88
88
88
VERTICAL DISTRIBUTION OF SEISMIC FORCES
I wx I
125,1401
1 30,353
1 0 1
1 55,493
52.0
68 0
60 0
30 0
Area
(sf)
884 0
884 0
457 6
598 4
528 0
264 0
Total Dead Load for Restoring Moment
Roof Diaphragm Tributary Dead Load
MAIN LEVEL SEISMIC WEIGHTS
1001 I I 884
150 781 5201 4056
150 781 6801 5304
100 781 3801 2964
1001 781 2901 226.2
Total Dead Load for Restoring Moment
Second Level Floor Diaphragm Tributary Dead Load
Total Dead Load for Entire Building'
Total Tributary Seismic Load for Entire House
TOTAL BASE SHEAR FOR HOUSE
h I w I w,h, /fwxhx I F, (SL) I F,, (ASD)
16 6 1417,3241 0 64 1 6 373 1 4,461
7 8 1236 7531 0 36 13 616
1 1 1 1
654 0771 1 00 1 9,989 I 6,992
OVERTURNING ANALYSIS DUE TO TRANSVERSE LOADS
UPPER FLOOR
Building Component
Roof Diaphragm Ceiling
Longitudinal Exterior Walls
Longitudinal Partitions
Total Dead Load
Force (Ib) Dist.
1 1 1 1 13,2601
1 1 1 1 4,4881
1 1 I 1 2641
1 1 1 1 37,0201
Total Moment Due to Transverse Seismic Forces'
SEISMIC LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
(ft)
1661
1661
1661
13 01
1
Seismic
Weight
(Ib)
13,260
0
3,432
4,488
2,640
1,320
37,020
25,140
8,840
3,042
3,978
1,482
1,131
28,106
30,353
65,126
55,493
9,989
2,531
Moment
(ft-lb)
220,116
74,501
4,382
481,260
298,999
Printed
10/20/2008
A. Abrous, Ph D., P E HiLine Homes, Inc.
Roof Diaphragm Ceiling
Longitudinal Exterior Walls
Longitudinal Partitions
Total Dead Load
Roof Diaphragm Ceiling
Transverse Exterior Walls
Transverse Partitions
Total Dead Load
Revised
9/3/2008
Total Moment Due to Transverse Wind Forces
MAIN FLOOR
I I
1 I
I I
I I
8,840
3,978
1,131
28,106
Total Moment Due to Transverse Seismic Forces
Total Moment Due to Transverse Wind Forces
Total Overturning Moment in Transverse Loading
Total Restoring Moment in Transverse LoadingI
6/10 of Total Restoring Moment in Transverse Loading)
OVERTURNING STABILITY'
Building Component Force (lb)
Roof Diaphragm Ceiling 1 1 1 1 13,2601
Transverse Exterior Walls 1 1 1 1 3,4321
Transverse Partitions 1 1 1 1 2 6401
Total Dead Load 1 1 1 1 37,0201
Total Moment Due to Longitudinal Seismic Forces'
Total Moment Due to Longitudinal Wind Forces'
MAIN FLOOR
8,8401
3,0421
1,4821
28,1061
Total Moment Due to Longitudinal Seismic Forces'
Total Moment Due to Longitudinal Wind Forces'
Total Overturning Moment in Longitudinal LoadingI
Total Restoring Moment in Longitudinal LoadingI
6/10 of Total Restoring Moment in Longitudinal LoadingI
OVERTURNING STABILITY'
SEISMIC LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
78
78
78
130
OVERTURNING ANALYSIS DUE TO LONGITUDINAL LOADS
UPPER FLOOR
Dist.
(ft)
16 61
16 61
166
170
781
7 81
781
17 01
Page 26 of 37
OK
126,196
68,952
31,028
8,822
365,378
108,802
27,650
320,9121
846,638
507,983
Moment
(ft -lb)
220,116
56,971
43,824
629,340
I 320,911
I 124,136
68 952
23,728
11 560
477,802
104,239
25,974
150,110
1 1,107,142
1 664,285
OK
Printed
10/20/2008
A. Abrous, Ph.D P.E.
Building Component
Roof Diaphragm Ceiling
20% of Flat Roof Snow Load 30 -psf
Transverse Exterior Walls
Longitudinal Exterior Walls
Transverse Partitions
Longitudinal Partitions
Building Component
Roof Diaphragm Ceiling
Longitudinal Exterior Walls
Longitudinal Partitions
Total Dead Load
Building Component
Roof Diaphragm Ceiling
Transverse Exterior Walls
Transverse Partitions
Total Dead Load
Revised
9/3/2008
HiLine Homes, Inc.
TABLE G -2 SEISMIC LOADS (GARAGE)
SEISMIC SHEAR LOADS ON GARAGE
Load Height/ Length
(psf)
Width (ft)
150
00
150
150
100
100
78
78
78
78
48 0
44 0
00
00
Area
(sf)
528
528
374
343
0
0
Total Dead Load for Restoring Moment
Roof Diaphragm Tributary Dead Load
Total Strength Level BASE SHEAR
Total ASD BASE SHEAR
OVERTURNING ANALYSIS DUE TO TRANSVERSE FORCES
Force
(Ib)
I 1,426
I 463
I 0
I 18 684
Total Moment Due to Transverse Seismic Forces
Total Moment Due to Transverse Wind Forces
Total Restoring Moment in Longitudinal Loading
6/10 of Total Restoring Moment in Longitudinal Loading
OVERTURNING STABILITY
Force Dist.
(Ib)
1,4261
1 I 5051
I I 01
18,6841
Total Moment Due to Longitudinal Seismic Forces
Total Moment Due to Longitudinal Wind Forces'
Total Restoring Moment in Longitudinal Loading
6/10 of Total Restoring Moment in Longitudinal Loading'
OVERTURNING STABILITYI
SEISMIC LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Seismic
Weight
(Ib)
7 920
0
2,808
2,574
0
0
18,684
13,302
Page 27 of 37
Seismic
Shear
(Ib)
1 426
0
505
463
0
0
2,394
1,676
Dist. Moment
(ft) (ft -Ib)
7 8 11,120
7 8 3,614
78 0
12.0 224,208
14,734
129,259
224,208
134,525
OK
OVERTURNING ANALYSIS DUE TO LONGITUDINAL FORCES
(ft) Moment
(ft-lb)
7 8 11,120
7 8 3,942
78 0
11 0 205,524
15,062
130,337
205,524
123,314
OK
Printed
10/20/2008
A. Abrous, Ph.D P.E.
Floor Level
Type Load
Wind Load (Ib)
Minimum Wind Load (Ib)
Controlling Wind Loads (lb)
Strength Level SeismicLoad (Ib)
ASD Seismic Diaphragm Load (lb)
Wind Load (Ib)
Minimum Wind Load (Ib)
Controlling Wind Loads (Ib)
Strength Level SeismicLoad (lb)
ASD Seismic Diaphragm Load (Ib)
Note. Bolded /shaded cells indicate controling shear loads
Revised
9/3/2008
Floor Level
Type Load
HiLine Homes, Inc. Page 28 of 37
TABLE H CONTROLLING SHEAR LOADS
HOUSE
Main Floor Level
Transverse 1 Longitudinal
13,4071 12,326
6,5281 4,147
1
13,4071 12,326
1
9 9891 9 989
6,9921 6,992
GARAGE
Main Floor Level
Transverse 1 Longitudinal
3,1191 3,897
2,1781 1,494
1
3,1191 3,897
1
2 3941 2 394
1,6761 1,676
CONTROLLING LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Second Floor Level
Transverse I Longitudinal
5,599 5,672
3,706 1,989
5,599 I 5,672
6,373 I 6,373
4,461 I 4,461
Second Floor Level
Transverse Longitudinal
Printed
10/20/2008
A. Abrous, Ph D P E
HiLine Homes, Inc. Page 29 of 37
TABLE I -1 WIND SHEAR WALL LOADS (HOUSE)
TRANSVERSE LOADS
Floor Level Main Floor Level Upper Floor Level
Wall Identification 1 2 Check 1 2 Check
Wall Type OSB OSB OSB OSB
Tributary Load Distance (ft) H 17.0 17.0 34.0 17.0 17.0 34.0
Tributary Load Fraction H 0.5 0.5 1.0 0.5 0.5 1.0
Applied Shear (Ib) 6 704 6 704 13 407 2,799 2 799
Wall Length (ft) 26 0 26 0 26 0 26 0
Applied Unit Shear (lb /ft) 258 258 108 108
Shear Wall Length (ft) 21.0 23.0 2 26.0
Resistive Unit Shear (lb /ft) 319 291 108 108
Shear Wall Height (ft) 7 8 7 8 8 0 8 0
Unit DL on Wall (lb /ft) 340 340 210 210
0.60 *[Unit DL on Wall] (lb /ft) 204 204 126 126
Max. Hold -Down 5 -ft SW (lb) 1,640
Max. Hold -Down 21 0 -ft SW (Ib)
Max. Hold -Down 11 0 -ft SW (Ib) 1,151
Max. Hold -Down 12 0 -ft SW (lb) 1,049
Max. Hold -Down 16 0 -ft SW (lb) 858
Max. Hold -Down 26, 0 -ft SW (Ib) -777 -777
LONGITUDINAL LOADS
Floor Level I Main Floor Level I Second Level
Wall Identification 1 A I B C D 1 B D
Wall Type I OSB I OSB OSB OSB I OSB OSB
Tributary Load Distance (ft) H I 0 0J 13 0 0 0 13 01 13.0 13 0
Tributary Load Fraction H 0 0I 0.5 0 0 0 51 0 5 0 5
Applied Shear (Ib) 6 163 6 1631 2,836 2,836
Wall Length (ft) I I 34 0 34 01 34 0 34 0
Applied Unit Shear (Ib /ft) I 181 181 83 83
Shear Wall Length (ft) I 18.0 24.0 19.0 29.0
Resistive Unit Shear (Ib /ft) 342 257 149 98
Shear Wall Height (ft) 7 8 7 8 8.0 8.0
Unit Wall DL (lb /ft) 525 525 335 335
0.6 *[Unit DL on Wall] (lb /ft) 315 315 201 201
Max. Hold -Down 4 0 -ft SW (lb) 2,041 1,373 792 380
Max. Hold -Down 5 0 -ft SW(Ib) 1,883
Max. Hold -Down 5 5 -ft SW (lb) 641
Max. Hold -Down 6t 0 -ft SW (Ib) 1,058
Max. Hold -Down 14 0 -ft SW (Ib) -202
Max. Hold -Down- 25.0 -ft SW (lb) 1
Note Maximum hold down loads are identified in shaded /bolded cells
Revised
9/3/2008
WIND SHEAR LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Printed
10/20/2008
A. Abrous, Ph D., P E.
TABLE 1 -2 WIND SHEAR WALL LOADS (HOUSE +GARAGE)
Floor Level
Wall Identification
Wall Type
Tributary Load Distance (ft) H
Tributary Load Distance (ft) G
Tributary Load Fraction H
Tributary Load Fraction G
Applied Shear (lb)
Wall Length (ft)
Applied Unit Shear (lb /ft)
Shear Wall Length (ft)
Resistive Unit Shear (lb /ft)
Shear Wall Height (ft)
Unit DL on Wall (Ib /ft)
0 60 *[Unit DL on Wall] (lb /ft)
Max. Hold -Down 4 -ft SW (lb)
Max. Hold -Down 5 -ft SW (Ib)
Max. Hold -Down 21 0 -ft SW (Ib)I
Max. Hold -Down 11 0 -ft SW (Ib)1
Max. Hold -Down 12.0 -ft SW (Ib)
Max. Hold -Down 16 0 -ft SW (Ib)
Max. Hold -Down 18 0 -ft SW (lb)
Max. Hold -Down 26 0 -ft SW (Ib)
Floor Level
Wall Identification
Wall Type
Tributary Load Distance (ft) H
Tributary Load Distance (ft) G
Tributary Load Fraction H
Tributary Load Fraction G
Applied Shear (Ib)
Wall Length (ft)
Applied Unit Shear (Ib /ft)
Shear Wall Length (ft)
Resistive Unit Shear (Ib /ft)
Shear Wall Height (ft)
Unit Wall DL (Ib /ft)
0 6 *[Unit DL on Wall] (lb /ft)
Max. Hold -Down 3 0 -ft SW (Ib)
Revised
9/3/2008
TRANSVERSE LOADS
Main Floor Leve
1
OSB
17.0
0.0
0.5
0.0
6 704
26 0
258
21.0
319
78
340
204
1,640
858
A
OSB
00
120
00
0.5
1 948
22 0
89
6.0
325
78
320
192
2,245
HiLine Homes, Inc. Page 30 of 37
2
OSB
17.0
11.0
0.5
0.5
8,263
32 0
258
29.0
285
78
340
204
1,101
999
387
LONGITUDINAL LOADS
Main Floor Level
B
OSB
13.0
05
6 163
34 0
181
18.0
342
78
525
315
3
OSB
00
11.0
0.0
0.5
1 560
24 0
65
8.0
195
78
150
90
1,341
C
OSB
00
120
0.0
0.5
1 948
22.0
89
22.0
89
78
320
192
Check
34.0
22.0
1.0
1.0
14 967
D
OSB
130
0.5
6 163
34 0
181
24.0
257
78
525
315
Upper Floor Level
1 2 Check
OSB OSB
17.0 17.0
0.5 0.5
2,799 2 799
26 0 32.0
108 87
26.0 26.0
108 108
80 80
210 210
126 126
-777
B
OSB
13.0
0.5
WIND SHEAR LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
-777
Second Level
D
OSB
130
0.5
2 836 2,836
34 0 34 0
83 83
19.0 29.0
149 98
80 80
335 335
201 201
34.0
1.0
Printed
10/20/2008
A. Abrous, Ph D., P E.
Max. Hold -Down 4 0 -ft SW (lb) 2,041 1 1,373
Max. Hold -Down 5 0 -ft SW (lb) 1,8831
Max. Hold -Down 5.5 -ft SW (lb)
Max. Hold -Down 6 0 -ft SW (Ib) 1,058
Max. Hold -Down 14 0 -ft SW (Ib) I -202
Max. Hold -Down 22.0 -ft SW (Ib) 1,421
Max. Hold -Down 25 0 -ft SW (Ib) i
Note Maximum hold down loads are identified in shaded /bolded cells
Revised
9/3/2008
HiLine Homes, Inc. Page 31 of 37
792
641
WIND SHEAR LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
380
1,730
Printed
10/20/2008
A. Abrous, Ph.D., P E.
Floor Level
Wall Identification 1
Wall Type OSB
Tributary Load Distance (ft) H 17.0
Tributary Load Fraction H 0.5
Applied Shear (Ib) 3 496
Wall Length (ft) 26 0
Applied Unit Shear (lb /ft) 134
Shear Wall LengthIt) 21.0
Resistive Unit Shear (lb /ft) 166
Shear Wall Height (ft) 7 8
Unit DL on Wall (lb /ft) 340
0 60 *[Unit DL on Wall] (lb /ft) 204
Max. Hold -Down 5 -ft SW (Ib) 449
Max. Hold -Down 21 0 -ft SW (lb)
Max. Hold -Down 11 0 -ft SW (lb)
Max. Hold -Down 12.0 -ft SW (Ib)
Max. Hold -Down 16 0 -ft SW (lb) -333
Max. Hold -Down 26 0 -ft SW (Ib)
Revised
9/3/2008
HiLine Homes, Inc. Page 32 of 37
TABLE J -1 SEISMIC SHEAR WALL LOADS (HOUSE)
TRANSVERSE LOADS
Main Floor Leve
2
OSB
17.0
0.5
3,496
26 0
134
23.0
152
78
340
204
64
-38
LONGITUDINAL LOADS
Floor Level Main Floor Level
Wall Identification A B C D 1 B
Wall Type OSB OSB OSB OSB 1 OSB
Tributary Load Distance (ft) H J 0 0 13.0 0 0 13 01 13 0
Tributary Load Fraction H 0 0 0.5 0 0 0.51 0.5
Applied Shear (Ib) 3 496 3 496 2,231
Wall Length (ft) 34 0 34 0 34 0
Applied Unit Shear (lb /ft) 103 103 66
Shear Wall Length (ft) 18.0 24.0 19.0
Resistive Unit Shear (lb /ft) 194 146 117
Shear Wall Height (ft) 7 8 7 8 8 0
Unit Wall DL (lb /ft) 525 525 335
0 6 *[Unit DL on Wall] (lb /ft) 315 315 201
Max. Hold Down 4 0 ft SW (Ib) 885 506 537
Max. Hold -Down 5 0 -ft SW (lb) 728
Max. Hold -Down 5 5 -ft SW (lb) 387
Max. Hold -Down 6 0 -ft SW (Ib) 191
Max. Hold -Down 14 0 -ft SW (Ib) -1,069
Max. Hold -Down 25 0 -ft SW (Ib)
Note. Maximum hold down loads are identified in shaded /bolded cells
Upper Floor Level
Check 1 1 2 Check
OSB 1 OSB
34.0 17.0 17.0 34.0
1.0 0.5 0.5. 1.0
6 992 2,2311 2,231
26 01 260
861 86
26.01 26.0
861 86
801 80
2101 210
1261 126
-952 -952
SEISMIC SHEAR LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Second Level
D
OSB
13.01
0 51
2,231
34 0
66
29.0
77
8.0
335
201
213
-1,897
Printed
10/20/2008
A. Abrous, Ph.D P E
HiLine Homes, Inc. Page 33 of 37
TABLE J -2 SEISMIC SHEAR WALL LOADS (HOUSE +GARAGE)
Floor Level
Wall Identification
Wall Type
Tributary Load Distance (ft) H
Tributary Load Distance (ft) G
Tributary Load Fraction H
Tributary Load Fraction G
Applied Shear (Ib)
Wall Length (ft)
Applied Unit Shear (lb /ft)
Shear Wall Length (ft)
Resistive Unit Shear (lb /ft)
Shear Wall Height (ft)
Unit DL on Wall (lb /ft)
0.60 *[Unit DL on Wall] (lb /ft)
Max. Hold -Down 4 -ft SW (Ib)
Max. Hold -Down 5 -ft SW (lb)
Max. Hold -Down 21 0 -ft SW (lb)
Max. Hold -Down 11 0 -ft SW (Ib)
Max. Hold -Down 12 0 -ft SW (Ib)I
Max. Hold -Down 16 0 -ft SW (Ib)I
Max. Hold -Down 18 0 -ft SW (Ib)I
Max. Hold -Down 26 0 -ft SW (Ib)I
Floor Level
Wall Identification
Wall Type
Tributary Load Distance (ft) H
Tributary Load Distance (ft) G
Tributary Load Fraction H
Tributary Load Fraction G
Applied Shear (Ib)
Wall Length (ft)
Applied Unit Shear (lb /ft)
Shear Wall Length (ft)
Resistive Unit Shear (lb /ft)
Shear Wall Height (ft)
Unit Wall DL (lb /ft)
0.6 *[Unit DL on Wall] (lb /ft)
Max. Hold -Down 3 0 -ft SW (Ib)
Revised
9/3/2008
TRANSVERSE LOADS
Main Floor Leve
1
OSB
17.0
0.0
0.5
0.0
3 496
26 0
134
21.0
166
78
340
204
449
-333
A
OSB
00
12.0
00
05
838
22.0
38
6.0
140
78
320
192
801
2
OSB
17.0
11.0
0.5
0.5
4 334
32.0
135
29.0
149
78
340
204
44
-58
-670
B
OSB
130
0.5
3 496
34 0
103
18.0
194
78
525
315
3
OSB
00
11.0
0.0
0.5
838
24 0
35
8.0
105
78
150
90
637
C
OSB
00
120
00
0.5
838
22.0
38
22.0
38
78
320
192
Check
34.0
22.0
1.0
1.0
7 830
LONGITUDINAL LOADS
Main Floor Level
D
OSB
130
0.5
3 496
34 0
103
24.0
146
78
525
315
Upper Floor Level
1 2 Check
OSB OSB
17.0 17.0
0.5
2,231 2,231
26 0 32 0
86 70
26.0 26.0
86 86
80 80
210 210
126 126
-952
B
OSB
130
0.5
0.5
-952
0.5
2,231 2,231
340 340
66 66
19.0 29.0
117 77
80 80
335 335
201 201
SEISMIC SHEAR LOADS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Second Level
D
OSB
130
34.0
1.0
Printed
10/20/2008
A. Abrous, Ph D., P E.
Max. Hold -Down 4 0 -ft SW (Ib) 885 506
Max. Hold -Down 5 0 -ft SW (Ib) 728
Max. Hold -Down 5 5 -ft SW (Ib)
Max. Hold -Down 6 0 -ft SW (lb) 191
Max. Hold -Down 14 0 -ft SW (lb) -1,069
Max. Hold -Down 22.0 -ft SW (lb) -1,815
Max. Hold -Down 25 0 -ft SW (Ib)
Note Maximum hold down loads are identified in shaded /bolded cells
HiLine Homes, Inc. Page 34 of 37
537
387
2131
1
-1,897
Revised SEISMIC SHEAR LOADS Printed
9/3/2008 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 10/20/2008
A. Abrous, Ph.D., P E
Description
Diaphragm Depth (ft)
Fpx Story Coefficient
Diaphragm Weight wpx (Ib)
Diaphragm Shear Fpx
Diaphragm Shear/Weight Ratio (Fpx/wpx)
Lower limit coefficient (0.2 SDS IE)
Upper limit coefficient (0 4 SDS IE)
Adjusted Coefficient Compared to Lower Limit
Adjusted Coefficient Compared to Upper Limit
Strength Level Diaphragm Shear (Ib)
Strength Level Diaphragm Unit Shear (lb /ft)
Service Level Diaphragm Shear (Ib)
Service Level Diaphragm Unit Shear (Ib /ft)
Shear Wall Nail Spacing S (in)
Number of nails per foot
Unit Shear Per Nail vnaii (Ib)
Nail Load Factor o
Nail Slip Factor e
Nail Slip Deflection y (in)
Hold -Down Deflection, y (in)
Total Shear Wall Deflection, y (in)
Calculated Story Drift, (in)
Allowable Story Drift, y (in)
Revised
9/11/2008
HiLine Homes, Inc. Page 35 of 37
Table K. Roof Diaphragm Calculations
Reference
ROOF /FLOOR DIAPHRAGM CALCULATIONS
TRANSVERSE LOADS
(Table B
(Table D
'Table G
'Table G
ASCE Sect. 12 10 1 i F /w
ASCE Sect. 12 10 1 0.2 SDS IE
ASCE Sect. 12 10 1 0 4 SDS IE
ASCE Sect. 12 10 1
ASCE Sect. 12 10 1
ASCE Sect. 12 10 1 QE
Calculation 1/2 Q/b
Calculation Q 0 7QE
Calculation yr
SHEAR WALL DEFLECTION
Cross Sectional Area of Shear Wall Chords (in Drawings
Shear Wall Height, h (ft) (Design Drawings
Minimum Shear Wall Length, b (ft) IDesign Drawings
Maximum Unit Shear lb /ft J
Maximum SL Seismic Unit Shear v, (lb /ft) (Table J
Shear Wall Bending Deflection y (in) (Calculation
Shear Wall Shear Deflection, y (in) (Calculation
'Dimension b
ISDS I/R
I wpx
F px
CALCULATIONS
11 Specifications
I�Caculation
IAPA Design Guide'
11APA Design Guide'
IAPA Design Guide'
IAPA Design Guide'
IAPA Design Guide'
II Calculation
Calculation
ROOF DIAPHRAGM CALCULATIONS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
I Equation /Comment I
IAchard 2(1 5)(5 5)
1h
Ib
IvASD
Iv
IYb 8vh3 /EAb
IYs vh /Gt
ISp
IS
lvvfna=il
yna ii v/S 616
e 1.2 (vnaii /616) 3 018
IYns 0 75he
I
(Y sw Yb +Y /b s Yns +Yhd'
I CdYsw/l
IASCE 7 Table 12 -11Ya 0 020h
Calculated deflection satisfy code maximuml drift, y 5 0.020h, per ASCE 7 Sec. 12.8.6 I
ROOF DIAPHRAGM DEFLECTION CALCULATIONS
Value
26
0 180
25 140
4,461
0 1775
0.2340
0 4680
0.2340
0.2340
5,883
113
4 118
79
165
78
55
117 0
163 8
0 0053
0 0153
6
2
81.9
0 1330
0 0027
0 0159
0 0468
0.08
0.33
1.87
YES
Printed
10/20/2008
A. Abrous, Ph D., P E.
Modulus of Elasticity- Diaphragm Chord, E (psi) INDS Table 4A
Cross Sectional Area of Diaphragm Chords (in Drawings
Diaphragm Length (ft) (Design Drawings
Blocked Bending Deflection (in)
Shear Modulus,. Gt (lb /in)
Shear Deflection of Sheathing Panel (in)
Diaphragm Nail Spacing, S (in)
Number of nails per foot
Unit Shear Per Nail, vnaii (Ib)
Nail Load Factor o
Nail Slip Factor e
Nail Slip Deflection, y (in)
Chord Splice Deflection, ycs (in)
Total Blocked Deflection, y (in)
Factor for Unblocked Diaphragms
Unblocked Diaphragm Deflection (in)
Check Diaph. /Shear Wall Deflection Ratio >2 0
Diaphragms constructed of wood structural panels in one- and two family residential buildings
are permitted to be idealized as flexible per ASCE Standard 7 -05
End Wall Diaphragm Shear (Ib)
Diaphragm Span (ft)
Diaphragm Length (ft)
Diaphragm Unit Shear (lb /ft)
Diaphragm Maximum Moment (ft -lb)
Diaphragm Chord Force (lb)
Allowable Nail Load (Ib)
Adjustment For Wind /Seismic Loads
Adjusted Allowable Nail Load (Ib)
Minimum Number of Nails Required At Splices
Maximum Nail Spacing at Splices (in)
Minimum Splice Length (in)
Design Splice Length (in)
AikiariejaPgielit nfaarib
Axial Chord Stess (psi)
Report Table G
'Design Drawings
'Design Drawings
[calculation
[Calculation
ICalculation
INDS Table 11N
INDS Table 2.3.2
';Calculation
'Calculation
'Design Drawings
'Calculation
'Design Drawings
al &illation
ICalculation
Allowable Parallel Compressive Stress (psi) IVVWPA Table 1
Allowable Parallel Tensile Stress (psi) IWWPA Table 1 INo. 2 Hem -Fir
Note 1 Diaphragms And Shear Wall Design /Construction Guide, November 2004
Revised
9/11/2008
Description
DIAPHRAGM CHORD SPLICE STRESS CALCULATIONS
HiLine Homes, Inc. Page 36 of 37
IAPA Design Guide' IYb 5vL /8EAb
'Table A -3' I7 /16 -in OSB
IAPA Design Guide' IYs vL /4Gt
ISpecifications ISp
Calculation IS
APA Design Guide' 'vnaii v/S
Calculation Ivf vnaii 616
IGAPA Design Guide 1.2 *(v—;i/6161
IAPA Design Guide' IYns 0 188Le
'APA Report T2002 -17 April 17 2002
INo 2 Hem -Fir E 11 300 000
IAchord 2(1 5)(5 5) 16 5
IL= I 34
0.0050
83 500
0.0115
6
2
56 6
0 0918
0 0009
0 0057
0 0625
Yd Yb ys Yns Ycs 0.0847
APA Report T2002 -17 April 17 2002 I 2.50
APA Design Guide'' Calculation I 0.21
Calculation IYd /Ys,,, 2.0? I 2.54
Reference I Equation /Comment I Value
ROOF UPLIFT CALCULATIONS
VEnd Q/2
lb
IL
I yr V/b
IM v /8
IC= T =M /b=
I H -F 10d Common
110- minute loads
I F 1 6 FNaii
I NN -Min C+ /FA
ROOF DIAPHRAGM CALCULATIONS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
IS
Lsplice SNN -Min I
I Design Specification I
jiindae
I Fot C/A T/A
INo 2 Hem -Fir
2,941
26
34 0
113
16,347
629
102
16
163.2
3.9
6. 0
23.1
48.0
1 <,3tJ6,,
38
1,250
500
Printed
10/20/2008
A. Abrous, Ph D P E.
HiLine Homes, Inc. Page 37 of 37
Description I Reference I Equation /Comment
Roof Truss Span, b (ft) 'Design Drawings I
Tributary Area to Truss Connection (sf) (Trusses 24-in o cIA 2b/2 b
Maximum Wind Uplift Pressure 85 mph, C (psfICalculated [0 5`(13 8 +9 6)] x 1.21
Maximum Wind Uplift Pressure 110 mph, D (plCalculated [0 5 *(23 1 +16)] x 1 47
Maximum Wind Uplift Pressure 120 mph, C (psiCalculated [0 5 *(27 4 +19 1)] x 1.21
Maximum Wind Uplift Load At Connection (Ib) 185 mph, Exp. C Fup pA
Maximum Wind Uplift Load At Connection (Ib) 1110 mph, Exp. D Fup pA
Maximum Wind Uplift Load At Connection (Ib) 120 mph, Exp. C Fup pA
Roof Unit Dead Load w (psf) Design Criteria
Roof Dead Load to Truss Connection (Ib) I FDL =0 6 w
Net Load to Truss Connection (Ib) 185 mph, Exp. C FNet F up FDL
Net Load to Truss Connection (Ib) 1110 mph, Exp. D FNet Fup FDL
Net Load to Truss Connection (Ib) 1120 mph, Exp. C FNet FUp FDL
Allowable Uplift for Simpson H10 Clip (Ib) ISPF /Hem -Fir with 160% Increase
Allowable Uplift For Simpson H2 5A Clip (Ib) ISPF /Hem -Fir with 160% Increase
Allowable Uplift For Simpson H1 Clip (Ib) ISPF /Hem -Fir with 160% Increase
Revised
9/11/2008
ROOF DIAPHRAGM CALCULATIONS
1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2
Value
26 0
26 0
-14.2
-28 7
-28 1
-368
-747
-731
150
234
-134
-513
-497
850
535
400
Printed
10/20/2008