HomeMy WebLinkAbout101 Fields Dr Technical - BuildingTECHNICAL
Permit 0 (6,- 22`'
Address 01 R Dr
Project description MOO SF PAdc,
J
o vetr 1 avq$ Co nd-a4h e
Date the permit was finaled io
Number of technical pages 52-
Fo.iovt‘c. Rif
Cover -All Building Systems
Legend Building Series 30' Span
ASCE7 -05 Site Specific Structural Evaluation
SO #83706
Frame Spacing 10'
NUV 0 7 7007
°NAL
rf
I EXPIRES 2 -I3 -o
November 2007
Legend Building Series 30' Span
Site Specific American Structural Evaluation
10 foot Frame Spacing
Evaluation Summary
This evaluation covers a Legend Series Building 30' in span with frames spaced at 10' on center The structure is intended to
be used as permanent, stand alone and fully enclosed. The structure is designed for the loads listed below in accordance with
the American Society of Civil Engineers. Minimum Design Loads for Buildings and Other Structures (ASCE7 -05) Any
deviation outside the criteria listed below is subject to review by the Professional Engineer for that specific project.
Site Live Load Criteria
Minimum Uniform Live Load. 12.0 psf
Site Snow Load Criteria.
Ground Snow Load
Flat Roof Snow Load
Building Category'
Wind Exposure
Site Wind Load Criteria
Wind Speed (3 second Gust)
Exposure Category
Building Category
Basic Wind Pressure
Enclosure
At Anchor Pin:
Load Case
Dead
Collateral.
Live
Snow Balanced
Snow Unbalanced
Wind. Perpendicular
Wind Parallel
At Endwall Column Base:
Load Case
Wind Parallel
Legend Building Series
Side A (kips)
Horizontal Vertical
0.07 0 16
0 02 0.04
0.97 1 64
1 70 2.57
0.90 0 77
0 04 1 11
-0.59 1 14
0.3 (kips)
33.1 psf
25 0 psf
Standard
Fully Exposed
96 mph
C
Standard
17.6 psf 17 6 elevation
Fully Enclosed
Base Reactions (Unfactored)
The maximum forces at the foundation /supports due to the site loads listed above are as follows.
Side B (kips)
Horizontal Vertical
-0 07 0.16
-0 02 0.04
-0.97 1 64
1 70 2.57
-0.90 2.30
1 64 -0.65
-0 17 1.35
add -0.3 (kips) at the tension anchor (gridlines 2 4)
Cover All Building Systems
Allowable Hanging Loads on Frames (Collateral)
Hung loads have been assumed to be less than 0.25psf (approximately 75 pounds distributed along the frame) Additional
load will reduce the snow and live load capacities accordingly
ASCE 7 -05
Cover All Building Systems
Table of Contents
Evaluation Summary
Table of Contents
Part 1 Introduction 1
Part 2. Section Material Properties 2
Part 2.1 Steel Components 2
Part 2.2 Fabric 2
Part 3 Load Calculations 3
Part 3 1 Load Assumptions 3
Part 3.2 General Load Cases Load Combinations 4
Part 3 3 ASCE7 -05 Roof Snow Loads 5
Part 3 4 ASCE7 -05 Wind Loads 6
Part 4 Structural Calculations 7
Part 4 1 Overview 7
Part 4 2. Primary Structural Elements 8
Part 4.3 Secondary Structural Elements 15
Part 4 4 Connections. 19
Appendix A Drawings Diagrams I
Appendix B STAAD Pro Results II
Legend Building Series ASCE7 -05
Cover All Building Systems
Part 1 Introduction
The Legend Building Series 30' span is constructed of portal frame plane trusses
manufactured of steel pipe. These frames are braced and stabilized using purlins and
cables, truss section and material properties are listed in Part 2 of this report. Frames are
mounted to a foundation by anchor bolts, both designed by others. Profile and plan views
of the buildings bracing layout are provided in Appendix A.
The frames are covered with pre- stressed fabric cladding The fabric is attached to the
end arches on the outer chord of the frame and tensioned to the base through winches.
The fabric is tensioned with a pre stress of -50pIf
This building is classified as a permanent structure. Loading information and
calculations are provided in Part 3 of this report with loading diagrams provided in
Appendix A. Verification of the structural capacities for building components is
provided in Part 4
Legend Building Series
ASCE7 -05 1
0
Part 2 Section Material Properties
Material distribution is as per the following
Part 2.1 Steel Components
Outer Chord
Inner Chord
Web
End Bay Purlins
Common Bay Purhns
Cross Cables
1 2 3/8' Dia. x 0 083 1 55ksi
1 2 3/8' Dia x 0 083 1 55ksi
1 1 Dia x 0 083
ear
2 7/8' Dia x 0 083
(<16 bay)
1 2 7/8 Dia. x 0 083 1 55ksi
1 5/16 Dia. 1
Part 2.2 Fabric
Dura-weave
2400 Strip Tensile
Modulus (EA) of 1100 pounds (per inch of width)
Cover All Building Systems
55ksi
50kSI
-2*.antar
(Note Trusses have a center-to-center depth between chords of 12 inches)
Legend Building Series ASCE7-05 2
Part 3 Load Calculations
Cover All Building Systems
Part 3.1 Load Assumptions
A typical interior frame spaced 10 on center was considered in determining load case
analysis and the capacity is calculated accordingly Design loads are determined in
accordance with the American Society of Civil Engineers standard (ASCE7 -05) Basic
loads consist of the following pre stress, dead load, roof live loads, snow loads, wind
loads and seismic loads as described below Loading diagrams are provided in
Appendix A.
Part 3.1.1 Pre stress
The fabric cladding is tensioned with a pre stress of approximately 50plf in both the warp
and fill directions
Part 3.1.2 Dead Load
The dead load is the actual material weight plus 0 25psf collateral load (approximately 75
lbs distributed along the inner chord of each frame.) This collateral load is not applied in
combination with wind loads as it provides additional resistance to uplift and over
turning.
Part 3.1.3 Roof Live Loads
Minimum roof hve loads are determined in accordance with Chapter 4 (Live Loads) of
ASCE7 -05
Part 3.1.4 Snow Loads
Roof snow loads are determined in accordance with Chapter 7 (Snow Loads) of
ASCE7 -05
Part 3.1.5 Wind Loads
Wind loads are determined in accordance with Chapter 6 (Wind Loads) of ASCE7 -05
Part 3.1.6 Seismic Loads
These structures are extremely lightweight and flexible For these structures wind Loads
typically govern over seismic forces. Detailed seismic load calculations are performed
for site specific analysis
Legend Building Series ASCE7 -05 3
Part 3.2 General Load Cases Load Combinations
Part 3.2.1 General Load Cases
1 DL Dead Load
2 CL Collateral Load
3 LL Roof Live Load
4 SL Uniform Snow Load
5 USL Unbalanced Snow Load
6 Perp WL Wind Load Perpendicular to Ridge
7 Par WL Wind Load Parallel to Ridge
Part 3.2.2 Load Combinations
LC 1 1 2 (DL CL) 1 6LL
LC 2. 1.2(DL CL) 1 6SL
LC 3 1 2(DL CL) 1 6USL
LC -4 0 9DL 1 6Perp WL
LC 5 0 9DL l 6Par WL
Legend Building Series
Cover All Building Systems
ASCE7 -05 4
Part 3.3 ASCE 7 -05 Curved Roof Snow Loads
(ASCE 7 -05 Sectt 7.0)
Ground Snow, p
Exposure Category 1
Building Category 1
33.1 psf
C Fully Exposed
11 Standard
Bay Spacing 1 10 ft
Slope at Eaves 1 53
Building Enclosure 1 III Fully Enclosed (Ct =1.2)
Basic Snow Load Factor Ch
Exposure Factor C
Thermal Factor C,
Importance Factor. 1
Flat Roof Snow p
Slope Factor C,
1 0.7
1 0.9
1.2
1.00
25.02 psf
1.0 (alpha 15)/55
3 1.00
12 1.00
22 0.87
32 0.69
42 0.51
53 0.31
70+
0.00
Legend Building Senes
25.02
25.02
21.84
17.29
12.74
7 73
0.00
250.2
250.2
218.4
172.9
1274
77.3
0.0
Case I Slope at 30`
Balanced Load
Unbaan ea Load
Case 2 Slopc tics 30' to 70'
Balanced Load
Ea
Unbalanced Load
T 7
Ea 30°
Po nt
#?.Gel
Snow Load at Crown
Snow Load at 30
Snow Load at Eave
3 1.00
12 1.00
22 0.87
32 0.69
42 0.51
53 0.31
70+
0.00
Porte of root wear
C. 1.0 horn Frgu 7.2
(may include enti roof)
Ea
Wind
Ea
30°
Pont
Wind tt4
0.5 q
Crown
C.5 q
Crown
Portion of 01 whe
C, 1.0 from Ft 7 -2
Crown
Crow
rown
30
Pan
10.64
18.55
27.34
32.66
24.06
14.61
0.00
30°
Fan?
Cover All Building Systems
Ea
Ea
q
C.
A C.
0
2 p. C,'/ C.
AC.
0
Ea
2p,C,
2 p. C,'/ C,
0
Ea
Case 2
12.51 psf
40.44 psf
1 17 19 psf
106.4
185.5
273 4
326.6
240.6
146.1
0.0
ASCE 7 -05 5
Part 3 4 ASCE 7-05 Wind Loads
(ASCE 7-05 Se 6.5)
KRW16405/001/VM.,
Basic Wind Speed, V
Exposure Category
Building Category
Mean Roof Height, h
Width, W
Length, L
Rise-to-Span Ratio. r
Bay Spacing
Building Enclosure
Gust Effect Factor, G
1 4
Directionality Factor. Kd
Importance Factor 1
Wind Pressure, q
Direction of MWFRS
Being Designed
14Zt7,2
1/2
1 1 0.70 I
2 1 -0.60 1
3 1 -0.43 I
1 0 1
Legend Building Senes
96.0 mph
C Fully Exposed
II Standard
17.6 ft
30 ft
40 ft
0.59
10 ft
111 Fully Enclosed (Ct=1
0.85
ihr41,Z.WX:X5WilgKE_
Velocity Exposure Coefficient. K, I 0.88
Topographic Factor K, 1 1.00
0.85
1.00
17.6 psf
1/4
12 29
10.48 I
7.48 1
0.00 1
ASCE 7-05
2
3
4
5
6
7
0.82
-0.70
-0.50
-0.90
-0.50
-0.30
0.40
0.00
0.00
0.00
13.47
7 48
-4.49
5 99
0.00
0.00
0.00
All 1 0.00 1
Alt 1 0.00 1
0.00
0.00
:.:4 4
12.29
10.48
7 48
Cover All Building Systems
122.9 4 1 -0.77 .1 13.47 1
104.8 5 1 -043 1 7 48 1
74.8 6 1 -0.26 1 -4 49 1
0.0 1 0.00 1 0.00
122.9
104.8
74.8
134.7
74.8
-44.9
59.9
0.0
0.0
0.0
0.0
0.0
134.7
74.8
-44.9
0.0
'''""k7t
6
Part 41.2 Secondary Structural Elements
Fabric and bracing calculations are provided in Part 43 below
Part 4 1.3 Connections
Connection design calculations are provided in Part 4 4 below
Legend Building Series
Cover All Building Systems
Part 4 Structural Calculations
Part 4 1 Overview
Part 4.1.1 Primary Structural Elements
The Cover All Building System s portal truss frame is modeled as an assemblage of
chord and diagonal elements. Appropriate member properties are assigned to the
members as well as the boundary conditions and loads. Releases are set to simulate zero
moment condition where appropriate, such as diagonals and kingpins. Anchors are
modeled as pins and the reactions are at the pm. Finite element analysis was performed
on the commercially available computer program STAAD Pro A summary of the
analysis results is provided in Part 4 2 below
Part 4.1.4 Graphical Results STAAD Pro Output
Graphical results mcludmg structural loading and axial force diagrams are provided in
Appendix A. A complete listing of the FEA results is provided in Appendix B
ASCE7 -05 7
Part 4.2 Primary Structural Elements
Part 4.2.1 Portal Frame Truss Tube Capacities
Legend Building Series
2.375
2.375
2.375
E 29000 ksi
0.083
(1.083
0.083
0.083
0.083
Notes.
1 Chord tension capacity is governed by the churd to coupler weld capacity (See Part 4 4.1)
2 Web tension capacity is governed by the web to chord weld capacity (See Part 4 4 2)
61
61
61
61
55
35.2
35.2
33 7
33.7
20.0
35.2
35.2
33.7
33.7
0.50
0.50
0.50
0.50
1.00
Cover All Building Systems
ASCE 7 -05 8
4.2.2 Portal Frame Truss Stress Ratio Summary
.1* 1,
1 %PP .W.041.,;1".11..Aiv'Eekti
Stress Ratio Stress Ratio
Stress Ratio
kleAki.4
'Outer Chord (at coupler)
2 'Outer Chord
3 !Inner Chord (at coupler)
4 !Inner Chord
5 I Web
Legend Building Series
10%
II%
9%
10°/0
7%
(Note. A complete listing of element forces and stress ratios is provided in Appendix B)
29%
22%
24%
30%
29%
9%
34%
9%
25%
25%
12%
32%
13%
12%
38%
Cover-All Building Systems
It 4,1 f
*Os ,,tilt411* t
k::•■:' k r "'A I, 1 ,v 4 t
Stress Ratio
Stress Ratio
•s• ev: wo
6%
12%
6%
6%
9%
ASCE 7-05 9
1.2(DL CL) 1 6LL
1.2(DL CL) 1 6SL
1.2(DL CL) 1 6USL
0.9DL 1.6Perp. WL
0 9DL 1.6Par WL
1
1
1
1
1
1
1
d 1
1
1
Part 4.2.3 Base Reactions Summary
Path: O: \Sales Orders \83000 \83700 \83706 LBS30s40@ 10 WRS (EDEN EXCAVATLNGMnalysis\FEA\LBS12 30' s
Lower Load Case
Upper Load Case
Start Row
o dear i
(DL CL) LL
(DL CL) SL
(DL CL) USL
DL Perp. WL
DL Par WL
0
0
0
0
0
0
0
0
0
0
0
0
Legend Building Series
8
17
53
107
1.80
1.00
1.57
-0.52
1 67
2.84
1.56
2.55
-0.88
1.84
2 77
2.50
-0 95
1 19
2.87
4.35
3 92
1 64
2.02
0 00
0.00
0.00
0.00
0 00
0 00
0.00
0.00
0 00
0 00
0.00
0 00
0.00
0 00
0 00
triorimok „.44w
0 00
0 00
0 00
0 00
0 00
8 1.07 1.84 0 00 0.00 1 0 00 1 0.00
9 1.80 2.77 0 00 0 00 1 0 00 1 0.00
10 1.00 0 97 0.00 0 00 0 00 0 00
11 0 12 -0.95 0 00 0 00 0 00 0.00
12 -0.52 -0.98 0.00 0.00 0.00 0 00
13 1.67 2.87 0 00 0 00 0 00 0.00
14 2.84 4.35 0 00 0 00 0 00 0 00
15 1.56 148 1 0.00 0.00 0.00 0.00
16 0 13 1 64 1 0 00 0 00 0 00 0 00
17 -0.88 1.68 1 0 00 0.00 0.00 0 00
33 0 1 8 1.07 1.84 0.00 1 0.00 0.00 0.00
33 0 9 180 2.77 0.00 1 0.00 0.00 0.00
33 0 10 1.00 2.50 0.00 1 0.00 0.00 0.00
33 0 11 1.57 -0 49 0.00 0 00 0 00 0.00
33 0 12 -0.24 1 19 0.00 0.00 0.00 0 00
33 0 0
33 0 13 1.67 2.87 0.00 0.00 0.00 0.00
33 0 14 2.84 4.35 0 00 0.00 0.00 0 00
c 33 0 15 1.56 3.92 0 00 0.00 0.00 0.00
a 33 0 16 2.55 -0 89 0 00 0 00 0.00 0 00
i-T-■ 33 0 17 -0.34 2.02 0.00 0.00 0.00 0 00
33 0 0
Cover All Building Systems
0.00
0.00
0 00
0 00
0 00
0.00
0.00
0 00
0.00
0.00
0 00
0.00
0.00
0 00
0 00
0.00
0 00
0.00
0.00
0 00
ASCE 7 -05 10
N
td
3
c
c
w
Part 4.2.4 End Wall Verticals
Wind Pressure Calculations:
Code Used: ascE7 -05 (2 Ends) v
Importance Category standard
Basic Wind Pressure: (psf) 17.60
Pressure Coefficient: 0.40
Exposure Factor Not Required
Load Factor 1.60
Importance Factor Not Required
Factored Applied Pressure: (psf) 11.26
Windpost
Description:
Moment Applied
Height: (in) Trib. Width: Width: (in) Depth: (in) Thickness: (in) Fy (ks') Capacity Moment
(in)
(in *kips) (in *kips)
w
Windpost
Endwall 1
Q End 1 symemcal, only 1/2 ntered
Number of Braced Bays:1',.
Tension Anchor
Moment (in *kips)
ECI 30
0
0
0
Unfactored Tension
Anchor Force: (kips)
0.3
Purlin Cross Cable Calculations:
Endwall 1 Unfactored Force:
Sum of Windpost Reactions (kips) 1 0.33
Maximum 'Leg Purlin Force (kips)I 0.33
Maximum 'Leg Cable Force (kips)1 0.43
Maximum Purlin Force (kips) 1 0.60
Endwall 2 Unfactored Forces
Sum of Windpost Reactions (kips) 1 0.33
Maximum 'Leg Purlin Force (kips)I 0.33
Maximum 'Leg Cable Force (kips) 0.43
Maximum Purlin Force (kips) 1 0.60
Tension Anchor Calculations:
Building Properties:
Building Average Height: (ft) 1
Bay Spacing: (ft) 1 .10:
Building Leg Height: (ft) 1 8.7
Steel Properties:
E: (ksi) 1 .29000 11
Endwall 2
End 1 symetrical, my 1/2 ntered
Number of Braced Bays:1. "1
Tension Anchor
Windpost
Moment (in kips)
ECI 1 30
0
0
0
Unfactored Tension
Anchor Force: (kips)
0.3
12
12
Stress
Ratio:
10% 1 0.5
10%
Cover All Building Systems
Factored Base Unfactored
Reaction: (kips) Base Reaction:
(kips)
0.5
0.3
0.3
Maximum
Unfactored
Deflection (in)
0.1
0.1
Legend Building Series ASCE 7 -05 11
Part 4.2.5 Outer Truss Chords
Check the outer truss chords for combined axial and bending loads due to the honzontal fabric load.
Applied Loads:
l 7.5ft
Check Capacity of Outer Chord for Combined Axial and Bending Loads:
The outer truss chord is not expected to carry the full fabric load horizontally One half of the load is
expected to be shed directly to the end support purhn
Capacities of Outer Truss Chord
Compressive capacity of outer truss chord, Pan 4.2.
Tensile capacity of outer truss chord, Pan 4 2 1
Bending capacity of 2.375' trusschord. Part 4.2.1
Applied Loads due to Live Load
Applied axial.load in outer truss chord due to Live LoadAppendix B
Applied bending load in outer truss chord due to Live Load. Appendix B
2
0 W fabric.L� l u M ux P u
M uY 12 M ux 2 Pu 2
M uy 8.63 kip -in
Check Stress Ratio:
Pu 8 'Muy Mux 040 0 okay
(1)P 9 I1M n WTI
Applied Loads due to Snow Load:
Applied axial load in outer truss chord due to Slow Loads, Appendix B
Applied bending load in outer truss chord due to Snow Loads, Appendix B
M y
0.5 wfabric.SL)-lu
12
M 21.81 kip•in
Check Stress Ratio:
Unsupported length of outer truss chord.
2
M ux
P u 8 /M +M 0.98 1 0. okay
O 9 04 n VM n
Legend Building Series
Maximum factored horizontal fabric load due to Live Loads. Part 4.3.1
Maximum factored horizontal fabric load due to Snow Loads, Part 4.3 1
Maximum factored horizontal fabric load due to Wind Loads, Part 4.3 1
M ux P u
P
2 2
Cover All Building Systems
ASCE 7 -05 12
Applied Loads due to Wind Load:
Applied axial load in outer truss chord due to W ine oads, Appendix B
Applied bending load in outer truss chord due to Wind Loads, Appendix B
2
(0.5 w fabnc.WL1 tu Mux P Pu
Muy'= 12 M ux 2 u 2
M 9.99kip•in
Check Stress Ratio:
Pu 8 Muy Mux 0.60
4P nT 9 n n
Legend Building Series
1.0 okay
Cover All Building Systems
ASCE 7 -05 13
Part 4.2.6: Truss Chord Unsupported Lengths
The tension chord can work to stop the buckling of the compression chord between purlins.
Check that the web connection is capable of resisting the moment generated by the buckling force.
Buckling Force:
Maximum compressive capacity of truss
chords, Part 4.2.1
1 17.5in Length of web between weld points
P 0.01 e
P br 0.31 kip Buckling force
Resulting Moment:
P br 1
M
2
M 2.74 kip -in
Resulting Force on Weld.
M
t
y 1.3in
t 2.11 kip
Weld Capacity.
41 075
F 70ksi
D 0.25in
L 0 75in
Check Bending in Web:
M
2
M 1.37 kip -in
(M 3 15kip in
4 4\
rt D o Di
Z, „16 Do
Legend Building Series
OR -0.6 (0 707 D) L Fxx
c4R 4 18 kip t weld is adequate
Check Torsional Shear Stress in Chord.
D 2.375in Outer chord diameter
D 2.209in Inner chord diameter
Mu. web is adequate
Polar section modulus
Cover All Building Systems
ASCE 7 -05 14
T M
T 2.74kip•in
T
Z
4 l4 ksi
T all 0.4 50ksi
T all 20 00 ksi
Legend Building Series
Applied torque
Cover All Building Systems
0.21 1 0. chord is okay
T all
Therefore the tension chord is effective in preventing the compression chord from buckling. Where there
are 2 or more weld points between purlins the effective length will be reduced when calculating the chords
compressive capacity
ASCE 7 -05 15
Part 4.3 Secondary Structural Elements
Part 4.3.1 Fabric Tension
Bay Spacing
Fabric Modulus EA
Pretension P
Prestress Distance L
Fabric Tensile Strength (plf)
Seam Tensile Strength (plf)
Unfactored Distributed Load (psf)
Load Factor
Distributed Load W (psf)
Vertical Force F (plf)
Radius R (ft)
Tension T (plf)
Fabric Edge Angle Alpha (deg)
Horizontal Force F (plf)
Sag s (ft)
Final Length Lt (ft)
Fabric Tensile Factor of Safety
Seam Tensile Factor of Safety
Iterative Radius R, (ft)
Iterative Tension A TA, (pif)
Iterative Tension B TB; (plf)
Iterative Check Variable (plf)
Calculate
Legend Building Senes
12.00
1.6
19.20
96
16.75
321 60
17.37
306.94
0 76
10 15
14.3
104
16.75
321.60
251.24
0 1568
10 ft
13000 plf
50 plf
0.038 ft
2880 plf
2100 plf
25 02
1.6
40 03
200 16
14 62
585.27
20 00
549.98
0.88
10.21
79
57
14 62
585.27
317 77
0 4907
Note: Distributed Loads are based on the highest average
pressure applied by that specific load case to a frame section
braced by an end support purlin.
ASCE 7 05
32.66
1.6
52.26
261.28
15 66
818.33
18.62
775.50
0.82
10 18
56
41
15.66
818.33
281 67
0 6364
12.29
1.6
19.66
98.32
18 72
368 11
15 49
354.74
0.68
10 12
12.5
91
18 72
368 11
209 75
0.3298
Cover All Building Systems
13 47
1.6
21.55
107 76
17.22
371 13
16.88
355.14
0 74
10 15
12.4
91
17.22
371 13
239 97
0 1429
16
Part 4.3.2 Purlin Capacities
Purlin and Bolt Properties
Bolt Grat1
She Thr 4111 In
Shear Threads
ItPkg
Allied Tube 1 55 1 60
Allied Tube 1" KI 5" 7gu 8ga 1 50 1 55
44W Steel 1 44 1 65
Purlin Bolt Capacities
saketnothmoopaAwarwtK%44:_,
Bolt Di ete 4 0.625 11
Tube Thick: t 1 0.083 h
Tube Y eld Sir igth Fy 1 55 lks
Tube Ulti Lae Sir imh Fu 1 60 lks
Edge Distance .004) 1 in
Edge Distanse 2 1 1 250 1 in
Nui fiber of Bolts 1
Strength per Unit Area Fn
Bolt Ar Ab
Shea Strength per Bolt
fat
Bearing Strength I (0.50
Bearing Strength 2 1 14.01 kips
Bearing Strength per Bolt 1 10.50 lkips
Ir *1(1*Mt0ttl&K
ns ialtati 0.21 kips
Sh Rupture
Btu .k Shear Rupp I
Black Shear Rupture
RIO( Shear Rupture Used
Ruptu Sticngth Used
Compressive Capacity 21.0 kips
18.7 lkips
Tensile Capinitv
;714nilirefrr''',41,1)
A325
48
6(1
A
48
0.31
11.04
11.21
9.34
9.34
9.34
9.34
Legend Budding Series
1 64)
1
lanhX6'&1
ksi
lkips
kips
kips
kips
kips
kips
75
Factored Purlin Capacity Summary
kl
2.875 1 (1.1)83
IMO
120
(Dell
Purlin Tube Capacity
ED,C
Steel Y'eld Str 1gth Fy
Modulo of Elasticity E
Lq111
Outside ele
Wall Thickness
Inside Diameter
Ar
M0111 11 rti
Seca Modulo
Radius of Gyration
Plait ie Modulus
End Fi ity Facto K
Mi Radi of Gyrati
Unsupnored Length lu
Panel Point Length In
Applied Distributed Load egati down)
Radius (o NA)
Detlectioi du to Radius
Consider Weight
Weight
Total Distributed Loads (Applied Weight)
Deflection due to Total Distributed Loads
Moment due to Distributed Load
Pdelta Mo nt
T nal Moments
02°
0.7101i ^4
0.49411 ^3
11.988 In
0.647 110
Slelide
V alal q 1 144
36
ASCE 7-05
0.9881inche
(20.00 !inches
120.001inehes
0 1pir
na !inches
0.001! che
n1
0.001pli
0.00 p1!
0.001 inches
0.1101kiein
0.001kip*
0.001kie'n
121 5 OK
0.625
90
55 ks Lal 'lib& 1 351
290001ks' rieleNeMs1Witedtion'altigatierre&W&le&W:ai611(141031/410106:101N
Allowable Pure Tensile Load 1 361kins
/.1375 1 Pi .,...,a1,,.$,. -4•.: &Wu' It....:.:' 8
Au4np o10»5
4
Lambda r
Lambda e
thickn cducti fi snor Q
Q/
Q2
Allowable Stress Rs
A111.1 1,10 Sir I P rl
Allowable Str Fi 7
Allowable Pure As al Load
Lambda u
Lambda r
M1 Used
Ph 01 Mn
Co ip c4 Mn
Nun-Compact Mn
Dchitl Siren th
Tbeithi
Allowable Compressive Load given Moments
Allowable Tensile Load given Moments
CO 11)1 Shea Ruti
Tr i)c Sire Rati
Max.
al
21.0
intEL
Cover All Bulding Systems
Nn
18.7
60.109
1.684
1.0001
11
17.11001(0 i
16.773 IL./
17.1)4101ks
11.139 kips
37.647
162,9271
35.596 !kip'
35.5961kip* n
I
nulkiv*In
32.041ki *in
11.1 kips
36.011ons
1.01
1.111
1.01
17
Part 4.3.3• End Support Purlins
Applied Loads:
l 7.5ft
Check Capacity of End Support Purlins:
Applied Loads:
`"'fabric.L l u
l u,
'5.82 Factored load applied to purlin due to Live /Snow Loads
P u ,2 66 ki p Factored load applied to purlin due to Wind Loads.
P u
Maximum factored horizontal fabric Toad due to Live /Snow Loads, Part 4.3.1
Maximum factored horizontal fabric load due to Wind Loads, Pan 4.3 1
Unsupported length of outer truss chord.
Purlin Capacity
End support purlins are 02 7/8' 14ga
Minimum compressive capacity olpurlin, Pan 4.3.2
Check Stress Ratio:
P '0.521
J 1.0, end support purlins are adequate.
4n ,0.24
Part 4.3.4 End Bay Purlins
Applied Load:
Maximum end bay purlin load, Pan 4.2 4
Purlin Capacity-
End bay purlins are 02 7/8 14ga
Minimum compressive capacity otpurlin. Pan 4.3.2
Check Stress Ratio:
P u
0.05 1.0. therefore end bay purlins are adequate.
4P n
Legend Building Series
Cover All Building Systems
ASCE 7 -05 18
Part 4.3.5 Common Bay Purlins
Applied Load.
Common bay purlins are designed to brace both the inner and outer chords of the truss from buckling.
Maximum compressive capacity of the truss chords. Part 4.2.1
Pb 0.01 4/P
P 0.31 kip Required bracing strength per unbraced bay
n 7 Maximum number of unbraced bays
Purlin Capacity
Common bay purlins are .2 7/8' 14ga
Compressive capacity of common bay purlin, Pan 4.3.2
Check Stress Ratio:
n P br
0.20 1 0 therefore common bay purlins are
4)Pn adequate
Part 4.3.6 Cross Cables
Applied Load:
Maximum cross cable load from common bays
Cable Capacity
S 9 Nominal strength of45/16 cable assembly(Cable assembly is
manufactured to meet a minimum breaking strength of 9.8kip)
0.95
Fitting reduction factor
Sd 4f.Sn
S 9.31 kip Design Strength of05 /16' cable assembly
Check Stress Ratio:
W 2. 0 Load factor
aw Tmax
0 47 1 0 therefore cable assemble is adequate.
Sd
(Note: Cable assembly Includes cable, turnbuckle, shackle and tab
Cover All Building Systems
Legend Building Series ASCE 7 -05 19
Part 4 4 Connections
Part 4.4.1 Truss Coupler Connection
Coupler Weld Capacity.
Given:
6 0.60 Weld resistance factor
F 60ksi Tensile strength of chord material
F 70ksi Strenght of filler metal
tchord 0.083in Chord thickness
tplate 0.375in Coupler plate thickness
D 0.25in Weld leg size
Louter 6.Oin Length of weld at outer chord connection
7.5 m Length of weld at inner chord connection
Ltnner
tmin min t chord t plate)
t min 0 083 to
Capacity of Fillet Weld.
4R
n 2
4 19.06
23.82
Check Capacity of Coupler Bolts:
Applied Load
Tcap
r ut
r 11.91 kip
Legend Building Series
1.063 4' t rim) L outer Fu if tmin 0 150m
1.063 4w 0 75 (0 707 D) L outer Fxx if t mtn 0 150in
1 063 4' t min Ltnner F if tmtn 0 150in
1.063 Qw 0 75 (0 707 D) L ynner Fxx if t rain 0 150in
Cover All Building Systems
O
0
0
Outer chord weld capacity (Note. Weld capacity governs the chords tensile
k111 Inner chord weld capacity capacity at the location of the couplers)
Maximum tension capacity of truss chords at coupler location. determined above.
Number of bolts per connection.
$r 20 7kip Design tensile strength of one55 /8' A325 (Grade 5) bolt.
r ut
0.58 1.0 coupler bolts are adequate.
O
ASCE 7 -05 20
Check Plate Thickness:
Determine the minimum plate thickness required to ensure acceptable combination of plate strength,
stiffness. and bolt strength.
Given.
a 0.875in
b .39in
p 2.4466in
d 0.625in Bolt diameter
dh 0 6875 in Hole diameter
F 44kst
Calculated.
d
bprime b
2,
b prime 0.08 in
b prime
P
a prtme
p =0.09 (3 =7.92
Minimum Plate Thickness:
d 2.0in
b•d
Z
4
Legend Building Series
Distance from bolt centerline to edge of plate
Distance from bolt centerline to plane of bending
Tributary length per pair of bolts
Yield strength of plate material
1 e
P rut
4 44• r ut b prime
t min p•F (i 0 5.aprime)
t min 0.368 in 3/8 plate is adequate.
Width of coupler plate
dh dh d
E 1 aprime. =min a+ 1.25b+
p 2 2 i_
5 0 72 a prtme 0.83 in
Check that Coupler Plate is Adequate to Brace the Outer and Inner Chords from Buckling.
Determine Plastic Modulus of Coupler Plate
b 0.375in Thickness of coupler plate
3
Z 0.38 in Plastic Modulus of coupler plate
Determine Required Plastic Modulus:
3/8 Plate cD
0
k)
Pb 0.01 P cap
Pb 0.31 kip Maximum buckling force of truss chords
a prtme
a prime 1.00
Maximum Compression Capacity of Truss Chords
1.0 if (3? 1.0
1 (3
min l S RJ_
l
Cover All Building Systems
otherwise
p
ASCE 7 -05 21
0.9 Resistance factor
F 44.00 ksi Yield strength of plate material
1 6.0in Moment arm
P l
Zreq F v
Z ieq 0.05 in
Z req
0 13 1 0 Coupler plates are adequate
Z
Part 4.4.2 Web Connection
Given:
0.75 Weld resistance factor
F 70ksi Strength of filler metal
D 0.25in Weld leg size
L 1.5 in Length of weld
Capacity of Weld
4R OW 0.6 (0 707 D) L Fxx
(I)R 8.35 kip Web weld capacity (Note Weld capacity governs the webs tensile capacity)
Part 4.4.3 Kingpin Plates
Check that Kingpin Plate is Adequate to Brace the Outer and Inner Chords from Buckling
Determine Plastic Modulus of Kingpin Plate:
b 0.25in
d 2.50in
b•d
Z.=
4
P br 0.31 ki p
0.9
F 44.0 ksi
1 =6.Oin
Thickness of kingpin plate
Width of kingpin plate
Z 0.3 i Plastic Modulus of coupler plate
Determine Required Plastic Modulus:
t)
0
Q
Maximum buckling force of truss chords
Resistance factor
Yield strength of plate material
Moment arm
2 1/2
Cover All Building Systems
11
1 /4 Plote (.0
IL.
1.
d
Legend Buildmg Series ASCE 7 -05 22
P br 1
Z1eq F
Z req 0.05 in
Z req
=012
Z
Check Kingpin Pur Connection.
Determine Shear Rupture Strength:
075
F 65ksi
w 2.5in
t 0.25in
d 0.6875 in Hole diameter
A 4 (0.5 w) t
A 1.25 in
1.0. Kingpin plates are adequate
Resistance factor
Tensile strength of plate material
Width of kingpin plate
Thickness of kingpin plate
Shear Rupture Strength
OR $•0.6 F A
OR 36.56 kip Maximum tension capacity of purlin (18.7kip), therefore okay
Determine Block Shear Strength
0 75 Resistance factor
F y 44 0 ksi Yield strength of plate material
F 65 0 ksi Tensile strength of plate material
t 0.25 in Thickness of kingpin plate
dh 0.6875 in Hole diameter
Gross and Net Areas in Shear and Tension.
A (2.75in) t
A (2.75in d
Block Shear Strength:
F A 33.52 kip
(lR 37.51 kip
Gross tension.area
Net tension area
011/16
0.6-F A 17.67 kip
Cover All Building Systems
A 2 (1.25in) t
A 2 (1.25in 0.5 d t Net shear area
OR $•min[_(0.6 F A (F A (0.6-Fu A ny) (Fu Ant)] if Ant) (0.6 F A
4'•min[_(0.6.F A (F A (0.6.F A (F A otherwise
Maximum tension capacity of purlin (18.7kip). therefore okay
Gross shear area
Legend Building Series ASCE 7 -05 23
Determine Bearing Strength:
0.75
F 65.0 ksi
t 0.250 in
db 0.625in
dh 0.6875 in
L 1.25in 0.5 d Clear distance from edge of hole to edge of plate
Bearing Strength.
tpR 21t•min[(1.5 L t F (3.0 d t F
0R 33 13 kip Maximum tension capacity of purhn (18 7kip), therefore okay
Check Kingpin Cross Cable Connection.
Determine Shear Rupture Strength:
0 0 75
F 65ksi
w 2.5in
t 0.25in
d 0.6875in
A 2(0.5w)t
A 0.63 in
Determine Bearing Strength:
0.75
F 65.0 ksi
t 0.250 in
d 0.625in
d 0.6875 in
Legend Building Senes
Resistance factor
Tensile strength of plate material
Thickness of kingpin plate
Bolt diameter
Hole diameter
Resistance factor
Tensile strength of plate material
Width of kingpin plate
Thickness of kingpin plate
Hole diameter
Resistance factor
Tensile strength of plate material
Thickness of kingpin plate
Bolt diameter
Hole diameter
9 011/16
J CR055
d CONNECT N POINT
-rtf 1 1/4
2 1/2'
Cover All Building Systems
Shear Rupture Strength.
$R 4t•0.6 -F A
0R 18.28 kip Minimum breaking strength of cable assembly (9 8kip). therefore okay
L 1.25in 0.5 •d Clear distance from edge of hole to edge of plate
Bearing Strength
OR 0•min[(1.5 L t F (3.0-d t F
0R 16.57 kip Minimum breaking strength of cable assembly (9.8kip), therefore okay
ASCE 7 -05 24
Check Kingpin Weld Capacity-
Given:
0 75 Weld resistance factor
F 70ksi Strength of filler metal
D 0.25in Weld leg size
L'= 3.3in Length of weld
Capacity of Fillet Weld
4R O ((1707 D) L Fxx
(1)R 18.37 kip Kingpin weld Maximum tension capacity of purlin (18 7kip), therefore okay
capacity
Part 4.4.4 Base Plate
Base Plate Weld Capacity.
Given.
0.60 Weld resistance factor
F 60ksi Tensile strength of chord material
70ksi Strenght of filler metal
F
tchord 0.083in Chord thickness
t plate 0.375in Coupler plate thickness
D 0.25in Weld leg size
)-'outer 6.0in Length of weld at outer chord connection
L innet 7.5in Length of weld at inner chord connection
t rain min t chord t plate)
t rain 0.083 in
Capacity of Fillet Weld.
Legend Buildmg Series
1.063 T w t min Louter F 'f t ram 0 150in
1.063 4 75 (0 707 D) L outer F xx if t rain 0 150in
1 063 6u, t min Linnet F if t 0 150in
1.063.6, 075 (0.707 D) inner Fxx if tmin> 0 150in
Cover All Buildmg Systems
19.06 Outer chord weld capacity (Note: Weld capacity governs the chords tensile
6R° 23 82, kip Inner chord weld capacity capacity at the location of the base plate)
ASCE 7 -05 25
Check Base Plate in Bearing:
Determine Bearing Strength:
4, 0 75 Resistance factor
F 65ksi Tensile strength of plate material
t 0.1875 in Thickness of plate
d 0.625in Anchor diameter
dh 0.6875 in Hole diameter
L c 1. Oin 0.5 d Clear distance from edge of hole to edge of plate
Bearing Strength.
4)12 2 [4,- min[(1.5 L t F (3 0 d t F
012 18 00 kip Maximum horizontal base reacion therefore okay
Part 4.4.5 End Wall Vertical Connections
Top Connection:
Check Critical Weld Capacity
O 0 75
F 70.0 ksi
D 0.25in
L 1 Oin
012 O 0.6 (0 707 D) L Fxx
012n 5.57 kip Maximum honzonta] reacion, therefore okay
Bottom Connection:
Check Base Angle in Bearing:
Determine Bearing Strength.
0 75 Resistance factor
F 65ksi Tensile strength of plate material
t 0 1875 in Thickness of plate
db 0.625in Anchor diameter
d 0 6875 in Hole diameter
L 1.0in 0.5 dh) Clear distance from edge of hole to edge of plate
Bearing Strength.
OR 214,- min[(1.5 L t F (3.0 -d t F
epR 18 00 kip Maximum horizontal reacion. therefore okay
Legend Building Series
Cover All Building Systems
ASCE 7 -05 26
Appendix A Drawings Diagrams
Legend Building Series
Cover All Building Systems
ASCE7 -05 I
INTERIOR ARCH
ITEM# I QTY
1 30003000 1 2
30003355 I 2 1
30003350 1 2
END ARCH
1 ITEM# 1 QTY
1 30003005 1 2 1
30003360 1 1
30003365 1
1 30003350 I 2
APPROX WEIGHT
OF INTERIOR TRUSS
W/ BOLTS 247LB
1
REV.
RELEASED
MOW=
IB" BAY
IC1 CABLE 1 1231 -91 231
I
err I DATE I
14' BAY
REbl7 I.F167T
81200 -8 1 209
PURLIN LAYOUT PURLIN LAYOUT
FOR FOR
INTERIOR BAY BRACED BAYS
29' -3 7/8 INSIDE TO INSIDE OF BASE PLATES
29' -10 7/8 OUT TO OUT OF BASE PLATES
31 -1 13/16` OUT TO OUT OF STEEL
8 BAY
12' BAY
18611 -91 pg I 81171o0! NWI L 1 0 1 4 137 I
DEALER:
CUSTOMER:
PROJECT
PROJECT ID:
C1
ORDER ID:
83706
6 BAY 1 6 8Ar
11161X1 I 1LN4114 1
1143 -01 143' 1 .811 -0 137
DM ORMIND E PRDPERIY a -ALL
MU= b VPS PC. AIM REPRIMUCTI R
M PM OR 01 MIRE =ROUT 11[
f7PRESSED =TIER =MOD Of
CORM-M1 SURD= 814700 MC. 8I
POURED.
D V
rawestrun
BRACING LEGEND
P PURLIN
R RIDGE PURLIN
X CROSS CABLE
U/S BASE EL. 100' -0"
102 NOV Oil ®6M 0 M 6 8. e 1Y AICHLI K 57p
I pl: 1 -106 -687 -2888 FAR: 1-300-687-2762
i lKu 513.5170 L44 BUILDING PROFILE re-1-n-
REV.
O
I EFT ELEVATION
DESCRIPTION
Tn
DATE
0
a-
10' -0' I
TYP
MK LENGTH. O,C.
wIETEaES E&YELI IUMNG
BOmImN! QE LOG
OCEE7ING TUBE LOCATION
espWECS m TftlsT/ wQ.
e9BB91ANDL00utteso TES
1' 6
40' o
PLAN
T T T
ALL PUREINS: 2 7/6
StnE Fl FVATION
DEALER:
CUSTOMER:
PROJECT
PROJECT ID:
4
ORDER ID:
83706
TIP
U/S BASE E.FV: IOD' -0' TIP
BASE WAIL Ott. 21' —D' 11?
THIS DRANO1O IS PROPERTY OF
COVER -AIL DUBBING MIENS INC.
ANY REPRODUCMA 61 ■4OIE OR IN
PART WTMOUT THE EXPRESSED
WRITTEN OONSENT OF COVER -ALL
BUILDING SYSTEMS INC. IS
PROHIBITED.
DRAWN 61:
RIGHT Fl FVATION
BUOLIDONG SY 7T1DVS
Nn 6YY6BTf>M61 RD. 6MEA10OK 11.451451CHEMAN, 67P 1M
i 1 -706- 667 -2666 Ms 1-006 -557 -2717
IlTrEW rroom Girl
BRACING LAYOUT
ANCHOR BOLT OS /8"
S
3 1/2" 1
1
Ve 1-
1 3/4" —1
00Ml A BASE EL 100' -0"
ANCHOR BOLT 115/8"
DEW& Y
ANCHOR BOLT 05/8"
A
REV.
n n
1 r 31/Z"
vs
—I—Q-0
O/S
3/4"
BASE EL 100' -0"
I o 1 r O Tt1 Vx
to
E
n
3 n
DETNL "D" BASE EL. 100' -0"
ISSUED FOR APPROVAL
DO(7tlPIpN
A
18'x14 —9" DOOR
BY OTHERS
FRAMED BY COVER —ALL
0
DV 102 NOV 07
IT I DATE
5' -9 7/16"
D
SPAN
BASEPIATES ELEVATION
DOOR/VENT SIZE LOG
FASTENING TUBE LOCATION
HSS MATCH PRICEUST/ WIZ.
HORIZDNTAL LOCATIONS
18' 4'
29' 10 7/8" OUT TO OUT OF BASE PLATES
DEALER: WESTERN REFINERY
SERVICES INC
CUSTOMER: EDEN EXCAVATING
PORT ANGELES. WA
PROJECT EQUIP MACH. STORAGE
PROJECT ID:
ORDER ID:
83706
N.T.S.
I MARKN I COMPONENTS I WEIGHT I
EC -1 IHSS4x4x11GA -92 1 48.59(
HD -1 I HSS4x4x 11 GA -21411 I 113.011
FT 12" x 3" FASTENING TUBE (FIELD CUT) I
D
THIS DRAWING B PROPERTY OF
COVER -ALL BUILDING SYSTEMS INC.
ANY REPRODUCTION N WHOLE OR IN
PART WITHOUT THE EXPRESSED
WIBTTEI/ CONSENT OF COVET( -ALL
BUILDING 5TSEE115 INC. 15
PROHIBITED.
D VONKUSTERI 02 NOV 07
5' -9 7/16"
B
6VER7
lf.
NUOILOUNG sirs7iaas
3018 OBNIAN131111 ND. BABBA100N. SAIDMICHEMIN4. B7P 1M
P11 1- 301- 857 -31BB TAx: 1 -306- 867 -3717
1lOGrEI ommerm.anr
ENDWALL GRIDLINE 1 I FB02 A
ANCHOR BOLT A5/8"
3 1/2'
1
1n L
ono& Y
s ®s
ANCHOR BOLT 05/8'
0
D/S II
1 3/4'
n
DEP& 'A' BASE EL 100' -0'
ANCHOR BOLT P5 /r
Lr 1 3/4•
r S
BASE EL 100' -0'
t
I J 1 +J
I
DETAIL 0 BASE EL 100' -O
A
REV.
ISSUED FOR APPROVAL
DESCRIPTOR
N
N
A
o 11
4
DV
BY
c
4
4
4
A C
4
°p
0
0
0
.0
ID
02 NOV 071
aTE
4
4 4
5' -9 7/16"
a 4
8
D
SPAN
BASEPLATES ELEVATION
DOOR/VENT SIZE LOC.
FASTENING TUBE LOCATION
HSS MATCH PRICEUST/ WIZ.
HORIZONTAL LOCATIONS
PROJECT ID:
18'x14 -9 DOOR
BY OTHERS
FRAMED BY COVER -ALL
18' 4"
29' 10 7/8" OUT TO OUT OF BASE PLATES
DEALER: WESTERN REFINERY
SERVICES INC
CUSTOMER: EDEN EXCAVATING
PORT ANGELES. WA
PROJECT EQUIP MACH. STORAGE
ORDER ID:
83706
1 MARK# 1 COMPONENTS 1 WEIGHT
IEC -1 IHSS4x4x11GA -92 48.591
1HD -1 1HSS4x4x11GA -214H 1 113.011
IFT 12" x 3" FASTENING TUBE (FIELD CUT) 1 I
4 4
D
4
4
4
a
De DRAWING IS PROPERP/ OF
COVER -ALL UULCINO SYSTEM INC.
ANY REPRODUCTION N WHOLE OR 51
PART WITHOUT THE EXPRESSED
WRITTEN CONSENT OF COVER -ALL
BULDIND SYSTEMS INC. HI
PROHIBITED.
010 11101 DAR!
D VONKUSTER 02 NOV 07
111152151m rift
Mat
N.T.S.
FT
a
4
4
a
4
4
4
4
5' -9 7/16'
B
J
S UBILDIlfPIJc3 SYMM MS
3818 08■606331N RD. ZABICATCGI. BASOATCNEWI B7P ,M
I PH: 1 -106 -567 -26116 FAIL• 1 -306 -667 -2717
ENDWALL GRIDLINE 5 I FF803 I AA
Loading Diagrams
Load case 1 Dead Load (DL) (self weight)
L
NIIINN llll
a h �p i pl1 l l II 11 1 1111111� a;�q�iir lh 01111:;;
Load case 2 Collateral Load (CL)
0111111111 11110111 111111111111111111
Illlll 111111111111,
1 l il11�
Load case 3 Live Load (LL)
�a
Apt
Load 2
Load 3
i t IIN,
iI!I�JIIII 111111 4111 II
IN
Load case 4 Snow Load (SL)
Load
aiuulu.
Load 5
Load case 5 Unbalanced Snow Load (USL)
Load 6
Load case 6 Perpendicular Wind Load (Pere WL)
I-
Load case 7 Parallel Wind Load (Par WL)
Analysis Results Axial Forces
I,
I,
Load Combination 1.2(DL +CL) +1 6LL
Load 7
Load13 AxalFo
Load 14 AxblFo
Load Combination 1.2(DL +CL) +1 6SL
Load Combination 1.2(DL +CL) +1 6USL
L
Load15 AzblFo
Load Combination 0 9DL+ 1 6PERP WL
Load16 AzblFo
Load17 AziaIFo
Load Combination 0 9DL+ 1 6PAR WL
Appendix B STAAD Pro Results
Legend Building Series
Cover All Building Systems
ASCE7 -05 II
STAAD Pro
Version 2007 Build 01
Proprietary Program of
Research Engineers Intl
Date= NOV 2 2007
Time= 11 54 43
USER ID Coverall Building Systems Inc
PAGE NO 1
1 STAAD PLANE
INPUT FILE LBS12 30 STD
2 START JOB INFORMATION
3 ENGINEER DATE 01- DEC -06
4 END JOB INFORMATION
5 INPUT WIDTH 79
6 UNIT INCHES KIP
7 JOINT COORDINATES
8 1 472 227 -1887 21 0 2 460 661 -1884 01 0 3 466 236 -1866 99 0
9 4 484 14 -1855 85 0 5 481 987 -1834 88 0 6 501 64 -1827 23 0
10 7 503 399 -1806 22 0 8 524 126 1802 33 0 9 529 737 -1782 01 0
11 10 537 002 -1791 56 0 11 550 823 -1'782 02 0 12 560 092 -1763 08 0
12 13 580 813 -1766 99 0 14 593 422 -1750 08 0 15 613 064 -1757 75 0
13 16 628 579 -1743 47 0 17 646 465 1754 63 0 18 646 465 -1742 63 0
14 19 664 352 -1743 47 0 0 679 867 1757 75 0 21 699 508 1750 08 0
15 22 712 117 -1766 99 0 23 732 838 -1763 08 0 24 742 107 -1782 02 0
16 25 763 194 -1782 01 0 26 755 928 -1791 56 0 27 768 804 -1802 33 0
17 28 789 531 -1806 22 0 29 791 29 -1827 23 0 30 810 943 -1834 88 0
18 31 808 79 -1855 85 0 32 826 694 -1866 99 0 33 820 706 -1887 21 0
19 34 832 269 -1884 01 0
20 MEMBER INCIDENCES
21 1001 2 3 1002 16 18 1003 18 19 1004 32 34 2001 3 5 2002 5 7 2003 7 9
22 2004 9 12 2005 12 14 2006 14 16 2007 19 21 2008 21 23 2009 23 25
23 2010 25 28 2011 28 30 2017 30 32 3001 1 4 3002 15 17 3003 17 20
24 3004 31 33 4001 4 6 4002 6 8 4003 8 10 4004 10 11 4005 11 13 4006 13 15
25 4007 20 22 4008 22 24 4009 24 26 4010 26 27 4011 27 29 4012 29 31
26 5001 1 3 5002 3 4 5003 4 5 5004 5 6 5005 6 7 5006 7 8 5007 8 9
27 5008 9 11 5009 11 12 5010 12 13 5011 13 14 5012 14 15 5013 15 16
28 5014 16 17 5015 17 19 5016 19 20 5017 20 21 5018 21 22 5019 22 23
29 5020 23 24 5021 24 25 502 25 27 5023 27 28 5024 28 29 5025 29 30
30 5026 30 31 5027 31 32 5028 32 33 6001 1 2 6002 17 18 6003 33 34
31 7001 9 10 7002 25 26
32 START USER TABLE
3 TABLE 1
34 UNIT INCHES KIP
35 PIPE
36 2 375IN14GA
37 2 375 2 209 0 0
38 1IN -14GA
39 1 0 834 0 0
40 TABLE 2
Friday November 02 2007 01 02 PM
0 \Sales Orders \83000 \83700183706 LBS30x40 010 WRS (EDEN EXCAVATING) \Analysis \FEA \LBS12 30 and Page 1 of 6
STAAD PLANE
PAGE NO 2
41 UNIT INCHES KIP
42 TUBE
43 0 375IN -FB
44 0 749675 0 375 2 0 1874 0 00878906 0 249928 0 0216668 0 14055 0 499733
45 0 25IN -FB
46 0 496496 0 25 2 0 124 0 00260417 0 16577 0 00692141 0 062 0 330667
47 END
48 DEFINE MATERIAL START
49 ISOTROPIC STEEL
50 E 29000
51 POISSON 0 3
52 DENSITY 0 000283
53 ALPHA 6 5E -006
54 DAMP 0 03
55 END DEFINE MATERIAL
56 MEMBER PROPERTY AMERICAN
57 1001 TO 1004 2001 TO 2012 3001 TO 3004 4001 TO 4012 UPTABLE 1 2 375IN14GA
58 5001 TO 5028 UPTABLE 1 1IN -14GA
59 6001 TO 6003 UPTABLE 2 0 375IN -FB
60 7001 7002 UPTABLE 2 0 25IN -FB
61 CONSTANTS
62 MATERIAL STEEL ALL
63 MEMBER TRUSS
64 5001 TO 5028 6001 TO 6003 7001 7002
65 SUPPORTS
66 1 33 PINNED
67 UNIT FEET POUND
68 LOAD 1 LOADTYPE NONE TITLE DL
69 SELFWEIGHT Y -1 5
70 LOAD 2 LOADTYPE NONE TITLE CL
71 MEMBER LOAD
72 3001 TO 3004 4001 TO 4012 UNI PY
73 LOAD 3 LOADTYPE NONE TITLE LL
74 MEMBER LOAD
75 1002 1003 2002 TO 2011 UNI PY -120 0
76 LOAD 4 LOADTYPE NONE TITLE SL
77 MEMBER LOAD
78 1002 1003 UNI PY -250 2
79 2006 2007 UNI PY -250 2
80 2005 2008 UNI PY -218 4
81 2004 2009 UNI PY -172 9
82 2003 2010 UNI PY -127 4
83 2002 2011 UNI PY -77 3
84 LOAD 5 LOADTYPE NONE TITLE USL
85 MEMBER LOAD
86 1003 UNI PY -106 4
87 2007 UNI PY -185 5
88 2008 UNI PY -273 4
89 2009 UNI PY -326 6
90 2010 UNI PY -240 6
91 2011 UNI PY -146 1
92 LOAD 6 LOADTYPE NONE TITLE PERP WL
93 MEMBER LOAD
94 1004 2010 TO 2012 UNI Y -122 9
95 1002 1003 2004 TO 2009 UNI Y 104 8
96 1001 2001 TO 2003 UNI Y 74 8
Friday November 02 2007 01 02 PM
0 \Sales Orders \83000 \83700183706 LBS30x40 @10 WRS (EDEN EXCAVATING) \Analysis \FEA \LBS12 30 and Page 2 of 6
STAAD PLANE
7 LOAD 7 LOADTYPE NONE TITLE PAR WL
98 MEMBER LOAD
99 1004 2010 TO 2012 UNI Y 134 7
100 1002 1003 2004 TO 2009 UNI Y 74 8
101 1001 2001 TO 2003 UNI Y 44 9
102 LOAD COMB 8 (DL +CL) +LL
103 1 1 0 2 1 0 3 1 0
104 LOAD COMB 9 (DL +CL) +SL
105 1 1 0 2 1 0 4 1 0
106 LOAD COMB 10 (DL +CL) +USL
107 1 1 0 2 1 0 5 1 0
108 LOAD COMB 11 DL +PERP WL
109 1 1 0 6 1 0
110 LOAD COMB 12 DL +PAR WL
111 1 1 0 7 1 0
112 LOAD COMB 13 1 2(DL +CL) +1 6LL
11 1 1 2 2 1 2 3 1 6
114 LOAD COMB 14 1 2(DL +CL) +1 6SL
115 1 1 2 2 1 2 4 1 6
116 LOAD COMB 15 1 2(DL +CL) +1 6USL
117 1 1 2 2 1 2 5 1 6
118 LOAD COMB 16 0 9DL +1 6PERP WL
119 1 0 9 6 1 6
120 LOAD COMB 17 0 9DL +1 6PAR WL
121 1 0 9 7 1 6
122 PERFORM ANALYSIS
P R O B L E M S T A T I S T I C S
PAGE NO 3
NUMBER OF JOINTS /MEMBER+ELEMENTS /SUPPORTS 34/ 65/ 2
ORIGINAL /FINAL BAND WIDTH= 3/ 3/ 12 DOF
TOTAL PRIMARY LOAD CASES '7 TOTAL DEGREES OF FREEDOM 98
SIZE OF STIFFNESS MATRIX 2 DOUBLE KILO —WORDS
REQRD /AVAIL DISK SPACE 12 1/ 4101 2 MB
123 UNIT INCHES KIP
124 LOAD LIST 1 TO 17
125 PRINT SUPPORT REACTION ALL
Friday November 02 2007 01 02 PM
0 \Sales Orders \83000183700183706 L& 30x40 @'10 WRS (EDEN EXCAVATING) \Analysis \FEA \LES12 30 ant Page 3 of 5
STAAD PLANE
SUPPORT REACTIONS -UNIT RIP INCH STRUCTURE TYPE PLANE
PAGE NO 4
JOINT LOAD FORCE -X FORCE -Y FORCE -Z MOM -X MOM -Y MOM Z
1 1 0 07 0 16 0 00 0 00 0 00 0 00
2 0 02 0 04 0 00 0 00 0 00 0 00
3 0 97 1 64 0 00 0 00 0 00 0 00
4 1 70 2 57 0 00 0 00 0 00 0 00
5 0 90 0 77 0 00 0 00 0 00 0 00
6 0 04 -1 11 0 00 0 00 0 00 0 00
7 -0 59 -1 14 0 00 0 00 0 00 0 00
8 1 07 1 84 0 00 0 00 0 00 0 00
9 1 80 2 77 0 00 0 00 0 00 0 00
10 1 00 0 97 0 00 0 00 0 00 0 00
11 0 12 -0 95 0 00 0 00 0 00 0 00
12 -0 52 -0 98 0 00 0 00 0 00 0 00
13 1 67 2 87 0 00 0 00 0 00 0 00
14 2 84 4 35 0 00 0 00 0 00 0 00
15 1 56 1 48 0 00 0 00 0 00 0 00
16 0 13 -1 64 0 00 0 00 0 00 0 00
17 -0 88 -1 68 0 00 0 00 0 00 0 00
33 1 -0 07 0 16 0 00 0 00 0 00 0 00
2 -0 02 0 04 0 00 0 00 0 00 0 00
3 -0 97 1 64 0 00 0 00 0 00 0 00
4 -1 70 2 5' 0 00 0 00 0 00 0 00
5 -0 90 2 30 0 00 0 00 0 00 0 00
1 64 -0 65 0 00 0 00 0 00 0 00
7 -0 17 -1 35 0 00 0 00 0 00 0 00
8 -1 07 1 84 0 00 0 00 0 00 0 00
9 -1 80 2 77 0 00 0 00 0 00 0 00
10 -1 00 2 50 0 00 0 00 0 00 0 00
11 1 57 -0 49 0 00 0 00 0 00 0 00
12 -0 24 -1 19 0 00 0 00 0 00 0 00
13 -1 67 2 87 0 00 0 00 0 00 0 00
14 -2 84 4 35 0 00 0 00 0 00 0 00
15 -1 56 3 92 0 00 0 00 0 00 0 00
16 55 -0 89 0 00 0 00 0 00 0 00
17 -0 34 -2 02 0 00 0 00 0 00 0 00
126 FINISH
END OF LATEST ANALYSIS RESULT
Friday November 02 2007 01 02 PM
0 \Sales Orders \83000 \83700 \83706 LBS30x40 @10 WRS (EDEN EXCAVATING) \Analysis \FEA \LBS12 30 and Page 4 of 6
STAAD PLANE
For questions on STAAD Pro please contact
Research Engineers Offices at the following locations
USA
CANADA
CANADA
UK
FRANCE
GERMANY
NORWAY
SINGAPORE +65 6225 -6158
INDIA +91(033)4006 -2021
JAPAN +81(03)5952 -6500
CHINA +86(411)363 -1983
THAILAND +66(0)2645- 1018/19
North America
Europe
Asia
END OF IHE STAAD Pro RUN
DATE= NOV 2 2007
Telephone
+1 (714)974 -2500
+1 (905)632 -4771
+1 (604)629 6087
+44(1454)207 -000
+33(0)1 64551084
+49/931/40468 -71
+47 67 57 21 30
TIME= 11 54 44
support @reiusa com
support @reel co uk
support @reiasia net
PAGE NO
Email
support @bentley com
detech @odandetech com
staad @dowco com
support @reel co uk
support @reel co uk
info @reig de
staad @edr no
support @bentley com
support @bentley com
eng- eye @crc co jp
support @bentley com
support @bentley com
5
Friday November 02 2007 01 02 PM
0 \Sales Orders\83000\83700\83706 LBS30x40 @10 WRS (EDEN EXCAVATING)\Analysis \FEA\LBS12 30 ant Page 5 of 6
STAAD PLANE
PAGE NO 6
Friday November 02 2007 01 02 PM
0 \Sales Orders183000 \83700 \83706 LBS30x40 @10 WRS (EDEN EXCAVATING)lAnalysis\FEA \LBS12 30 and Page 6 of 6
Start Column (number) 1
Start Row 1 13
Primary Element Strength Ratios
Path: O_\Sales Orders183000183700183706 LBS30z40 @10.WRS.(EDEN EXCAVATING)1Analysis\FEA11BS12 30'std
Lower Load Case 13
Upper Load Case 17
Member Into 1 1 Capacities I Actuals I Strength Ratio
Beam Number 1 Group Number) P Modifier) P 1 T I M I Load Case' P I T 1 M I
3001
3002
3003
3004
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
1.00
3 1.00
3 1.00
3 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
Overwrite Existing Beam Group Numbers? (Y /N) Y
1 of 6
Total Members Checked
13 3.94 0.00 0.57 1 9
13 0.00 1.35 0.33 1 4%
13 0.00 1.35 0.33 1 4%
13 3.94 0.00 0.57 1 9%
13 4.58 0.00 0.57 1' 10%
13 3.88 0.00 0.46 8%
13 2.61 0.00 0.30 5%
13 2.60 0.00 0.30 5%
13 0.83 0.00 0.10 2%
13 0.00 0.58 0.29 2%
13 0.00 0.58 0.29 2%
13 0.83 0.00 0.10 2%
13 2.60 0.00 0.30 5%
13 2.61 0.00 0.30 5%
13 3.88 0.00 0.46 8%
13 4.58 0.00 0.57 10%
13 0.00 0.84 0.00 5%
13 1.10 0.00 0.00 6%
13 0.34 0.00 0.00 2%
13 0.33 0.00 0.00 2%
13 113 0.00 0.00 6%
13 0.00 0.28 0.00 2%
13 1.19 0.00 0.00 7%
13 0.00 0.86 0.00 5%
13 1.23 0.00 0.00 7%
13 0.00 0.82 0.00 5%
13 0.82 0.00 0.00 5%
13 0.00 0.63 0.00 4%
13 0.27 0.00 0.00 2%
13 0.00 0.10 0.00 1%
13 0.00 0.10 0.00 1%
13 0.27 0.00 0.00 2%
13 0.00 0.63 0.00 4%
13 0.82 0.00 0.00 5%
13 0.00 0.82 0.00 5%
13 1.23 0.00 0.00 7%
13 0.00 0.86 0.00 1 5%
13 1 19 0.00 0.00 1 7%
13 0.00 0.28 0.00 1 2%
13 1 13 0.00 0.00 1 6%
13 0.33 0.00 0.00 1 2%
Primary Element Strength Ratios
Path: O' 1Safes.Orders\83000\83700183706 LBS30x40@10 WRS (EDEN EXCAVATING)1Analysis\FEA\LBS12 30'.std
Lower Load Case 13
Upper Load Case 1'7'
Start Column (number) 1 1
Start Row I 13
Member Info 1 I
Beam Number I Group Number) P Modifier(
3001
3002
3003
3004
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
1.00
3 1.00
3 1.00
3 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00 IZ
Overwrite Existing Beam Group Numbers? (Y /N) Y
Caoacities
P I T I
2 of6
Total Members Checked
Actuals I Strength Ratio
M (Load Case P 1 T 1 M 1
5026 1 5 I 1.00 13 1 0.34 1 0.00 I 0.00 I 2%
5027 1 5 I 1.00 13 1 1 10 1 0.00 I 0.00 1 6%
5028 1 5 1.00 r <r::. 13 I 0.00 1 0.84 I 0.00 I 5%
14 6.44 0.00 0.97 24%
14 0.00 3.39 0.71 10%
14 0.00 3.39 0.71 10%
14 6.44 0.00 0.96 24%
14 8.19 0.00 0.97 30%
14 7.54 0.00 0.91 27%
14 5.35 0.00 0.66 11%
14 5.34 0.00 0.66 11%
14 1.66 0.00 0.20 3%
14 0.00 1.56 0.68 5%
14 0.00 1:56 0.68 5
14 1.66 0.00 0.20 3%
14 5.34 0.00 0.66 11%
14 5.35 0.00 0.66 11%
14 7.54 0.00 0.91 27%
14 8.19 0.00 0.96 30%
14 0.00 1 73 0.00 21%
14 2.28 0.00 0.00 26%
14 0.21 0.00 0.00 1%
14 0.99 0.00 0.00 6%
14 1.73 0.00 0.00 10
14 0.00 0.37 0.00 2%
14 2.17 0.00 0.00 25%
14 0.00 1 78 0.00 21%
14 2.55 0.00 0.00 29%
14 0.00 1.89 0.00 23%
14 1.87 0.00 0.00 21%
14 0.00 1.51 0.00 9%
14 0.64 0.00 0.00 4%
14 0.00 0.28 0.00 2%
14 0.00 0.28 0.00 2%
14 0.64 0.00 0.00 4%
14 0.00 1.51 0.00 9%
14 1.87 0.00 0.00 21%
14 0.00 1.89 0.00 23%
14 2.55 0.00 0.00 29%
14 0.00 1 78 0.00 21%
14 2.17 0.00 0.00 25%
Primary Element Strength Ratios
Path ::C::Sales Orders \830001837Q083706 LSS30z40@10 WFiS (EDEN EXCAVATING )\Analysis \FEA\LBS1230'.std:
Lower Load Case?" '13? Overwrite Existing Beam Group Numbers? (Y /N) Y'
Upper Load Case i.
Start Column (number) I 1
Start Row 1 13'
Member Info
Beam Number Group Number
5023 5
5024 5
5025 5
5026 5
5027 5
5028 5
3001
3002
3003
3004
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
P Modifier!
1.00
1.00
1.00
1.00
1.00
1.00
Capacities
P I T 1
I 1.00 1S
3 1.00✓ x r_ t 15
3 1.00 s �s 15
3 1.00dS� r, 15
4 1.00 te 't 15
4 1.00' j x 15
4 1.00 t w 15
4 1.00 �5r 15
4 1.003 c 15
4 1.00 15
4 1.00 15
4 1.00h r,.. e 15
4 1.00 15
r
4 1.00 �k�`' vc, .�s' 15
4 1.00' n 15
4 1.00`�e sr t K 15
5 1.00 15
5 1.00 3 a r 15
5 1.00 5 'r' 15
5 1.00 1 �n a 15
5 1.00 15
5 1.00' e Y a 15
5 1.00 ,rw �t 15
5 1.00 k 15
5 1.00 15
5 I 1.00 15
5 1.00 15
5 1.00k rah 15
5 1.00 15
5 1.00 15
5 1.00 15
5 1.00 15
5 1.00 15
5 1.00 r�
15
5 1.00 15
3 of 6
Total Members Checked
1 Actuals
M 'Load Case P T M
1 14 0.00 0.37 0.00
14 1 73 0.00 0.00
14 0.99 0.00 0.00
14 0.21 0.00 0.00
14 2.28 0.00 0.00
14 0.00 1 73 0.00
Strength Ratio
o�
2%
10%
6%
1%
26%
21%
3.11 0.00 0.56 7
1.03 0.00 0.29 3%
0.00 2.32 0.68 8%
4.26 0.00 0.51 9%
5.19 0.00 0.70 11%
6.29 0.00 0.86 23%
6.79 0.00 0.86 25%
6.79 0.00 0.81 25%
5.50 0.00 0.81 12%
3.69 0.00 0.59 8%
0.00 4.58 0.84 11%
0.00 4 72 0.93 11%
0.00 2.76 0.90 8%
0.00 2.75 0.46 6%
0.70 0.00 0.46 3%
3.35 0.00 0.51 7%
0.00 1 49 0.00 9%
1.94 0.00 0.00 22%
0.00 0.52 0.00 3%
1.65 0.00 0.00 9%
0.34 0.00 0.00 2%
114 0.00 0.00 7%
0.51 0.00 0.00 3%
0.00 0.01 0.00 0%
1.52 0.00 0.00 9%
0.00 0.27 0.00 2%
1.84 0.00 0.00 21%
0.00 1 17 0.00 7%
1.95 0.00 0.00 22%
0.00 1.92 0.00 23%
2.01 0.00 0.00 23%
0.00 1.94 0.00 23%
0.72 0.00 0.00 4%
0.00 0.92 0.00 5%
0.00 0.74 0.00 4%
Lower Load Case 13
Upper Load Case 11
Start Column (number) I 1
Start Row I 13
Primary Element Strength Ratios
Path: O: ■SalesOrders183000\83700183706 LBS30x40 @10 WRS (EDEN E(CAVATING)1Analysis \EEAJLBS12 30'.std
Member Info
Beam Number 1 Group Number
5020 A 5
5021
5022
5023
5024
5025
5026
5027
5028
3001
3002
3003
3004
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5
5
5
5
5
5
5
5
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5,
5
5
5
5
P Modifier!
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
Overwrite Existing Beam Group Numbers? (YIN) Y
Capacities
P I 7 I
4 of 6
Total Members Checked
I Actuals
M I Load Case P T M
-1 15 0.63 0.00 0.00
15 0.00 1.65 0.00
15 1.98 0.00 0.00
15 0.00 2.06 0.00
15 1.88 0.00 0.00
15 0.00 1.21 0.00
15 1 16 0.00 0.00
15 0.11 0.00 0.00
15 0.00 0.05 0.00
Strength Ratio
4%
10%
23%
25%
22%
7%
7%
1%
0%
16 0.00 0.63 0.11 2%
16 2.11 0.00 0.53 6%
16 0.63 0.00 0.26 2%
16 0.00 4.29 0.93 13%
16 0.76 0.00 0.26 2%
16 1.88 0.00 0.55 5%
16 2.98 0.00 0.55 7%
16 2.98 0.00 0.66 8%
16 3.23 0.00 0.66 8%
16 3.00 0.00 0.53 7%
16 0.00 1.39 0.14 3%
16 0.00 3.89 0.65 9%
16 0.00 7 42 0.72 25%
16 0.00 7 42 1.16 27%
16 0.00 8.88 118 32%
16 0.00 7.91 116 29%
16 0.00 1.09 0.00 7%
16 0.82 0.00 0.00 5%
16 0.00 0.81 0.00 5%
16 0.89 0.00 0.00 5%
16 0.00 0.43 0.00 3%
16 0.92 0.00 0.00 5%
16 0.00 0.40 0.00 2%
16 0.52 0.00 0.00 3%
16 0.24 0.00 0.00 1%
16 0.41 0.00 0.00 2%
16 0.67 0.00 0.00 4%
16 0.00 0.09 0.00 1
16 0.95 0.00 0.00 5%
16 0.00 0.80 0.00 5%
16 0.94 0.00 0.00 5%
16 0.00 1.27 0.00 8%
Lower Load Case 13
Upper Load Case 17
Start Column (number) 1 1 :1
Start Row I 13
Primary Element Strength Ratios
Path: fl_ 1Sales,Orders\83000\8370(\83706 LBS30x40 @10'WRS (EflEN EXCAVATING }1AnalosTEA1 asig s0'.
Member Info
Beam Number I Group Number
5017 1 5
5018 I 5
5019 1 5
5020 5
5021 5.
5022 5
5023 5
5024 5
5025 5
5026 5
5027 5
5028 5
rio
3001
3002
3003
3004
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
1.00
3 1.00
3 1.00
3 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
4 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1.00
5 1 1.00
5 1.00
5 1.00
5 1.00
Overwrite Existing Beam Group Numbers? (Y /N) Y`
Capacities
P Modifier I PI TI M I Load Case'
5 ot 6
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
Total Members Checked
Actuals 1 Strength Ratio
P I T M
1.00 It F n' 16 1 1.11 1 0.00 0.00 6%
1.00 1f 16 0.00 I 1.94 0.00 23%
1.00 16 0.99 0.00 0.00 6%
1.00 16 0.00 2.75 0.00 33%
1.00 16 1 43 0.00 0.00 8%
1.00 t 16 0.00 1.93 0.00 23%
1.00 yfk ;s 16 0.00 0.24 0.00 1%
1.00 4 4 r 9S i 16 0.00 0.90 0.00 5%
1.00 4. .:e r: v 16 0.00 2.04 0.00 24%
1.00 :te`ff.ot, 16 1.07 0.00 0.00 6%
1.00 16 0.00 3.17 0.00 38%
1.00 a 3 t c ii" 16 3.20 0.00 0.00 37%
0.00 2.20 0.26 6%
0.00 1.31 0.08 3%
0.00 0.64 0.11 2%
0.00 0.54 0.21 2%
0.00 2.89 0.29 6%
0.00 3.18 0.31 6%
0.00 3.15 0.31 6%
0.00 3.15 0.30 6
0.00 2.47 0.22 5%
0.00 1.91 0.15 4%
0.08 0.00 0.16 1%
0.76 0.00 0.38 3%
1.58 0.00 0.38 4%
1.58 0.00 0.48 5%
1 71 0.00 0.48 5%
1.05 0.00 0.36 3%
0.39 0.00 0.00 2%
0.00 .0.85 0.00 5%
0.00 0.04 0.00 0%
0.00 0.70 0.00 4%
0.00 0.37 0.00 2%
0.00 0.41 0.00 2%
0.00 0.44 0.00 3%
0.04 0.00 0.00 0%
0.00 0.77 0.00 5%
0.00 0.06 0.00 0%
0.00 0.72 0.00 4%
0.06 0.00 0.00 0%
0.00 0.64 0.00 4%
Primary Element Strength Ratios
Path: O_LSales Orders \83000\83700183706`LBS30x40610 WRS -(EDEN EXCAVATING )1Analysis\FEA1LBS1230',std
Lower Load Case 13" Overwrite Existing Beam Group Numbers? (Y /N) Y
Upper Load Case 17
Start Column (number) 1 1
Start Row 13
Member Info I Capacities I Actuals
Beam Number Group Number P Modifier/ P I T 1 M I Load Case P T M
5014 5 1.00 1 17 0.21 0.00 0.00
5015 5 1.00 9 17 0.00 0.57 0.00
5016 5 1.00Nr'�, 17 0.37 0.00 0.00
5017 5 1.00 �w''' a 17 0.00 0.48 0.00
5018 5 1.00 17 0.47 0.00 0.00
5019 5 1.00 ,a 17 0.00 0.33 0.00
5020 5 1.00 17 0.59 0.00 0.00
5021 5 1.00 iarw v 17 0.00 0.37 0.00
5022 5 1.00
s.� 17 0.26 0.00 0.00
5023 5 1.00 r sxr 17 0.12 0.00 0.00
5024 5 1.00 17 0.00 0.16 0.00
5025 5 1.00r 17 0.63 0.00 0.00
5026 5 1.00 17 0.00 0.89 0.00
5027 5 1.00 17 0.97 0.00 0.00
5028 5 1.00 �1r'1lk� 17 0.00 1.56 0.00
6 of 6
Total Members Checked
Strength Ratio
1%
3%
2%
3%
3%
2%
3%
2%
1%
1%
1%
4%
5%
6%
9%