Loading...
HomeMy WebLinkAbout2017 Westview Dr Technical - Building TECHNICAL ~~\ ~/ ~ C). ~~ '. t/_ ~ . ;;? . '\ }.. f;:jc0{!., , & '\:)c \'>..\~ \' K'-1\ \ '" \JJ Q./-? j-O\\ .. " . Reep Engineering & Consulting, Inc. Date: 03/30/07 By: I. E. Reep, P.E. LATERAL ENGINEERING FOR HILlNE HOMES PLAN 2112 [30-PSF SNOW, 110-MPH, EXP C, & SOC 02] Page 1 of 5 1. PROJECT INFORMATION Tami Djernes 9999 West View Drive Port An eles Wash in ton 98363 See permit application. HiLine Homes PROJECT INFORMATION AND CRITERIA OWNER/ADDRESS TAX PARCEL NUMBER/SITE ADDRESS: PLAN NUMBER: 2. STRUCTURAL DESIGNER INFORMATION Reep Engineering & Consulting, Inc. I.E. (Gene) Reep, P. E. 8205 Sunset Lane, Pasco WA 99301 Phone (509) 547-9087/Cell 366-2869 E:Mail: reepengineering@charter net Washington License No. 14364 Idaho License No. 8908 ICC No. 465600 Note: The above stamp applies to the structural members and assemblies described in the following calculations only and is valid with a copied or wet stam intended for reuse b HiLine Homes Inc. 3. SCOPE OF DESIGN TYPE OF DESIGN: EXTENT OF DESIGN: fILE REFERENCE CODES & STANDARDS Lateral engineering analysis of wind and seismic forces on building. Structural specifications for residence and two-car garage. 2003 International Building Code (IBC). 2003 International Residential Code (IRC). 2001 National Design Specification (NOS). American Society of Civil Engineers (ASCE) Standard 7-02. American Society for Testing Material (ASTM) Standard A307. American Plywood Association (APA) Diaphragms And Shear Walls Design/ Construction Guide, November 2004. ~ -, Reep Engineering & Consulting, Inc. . Date: 03/30/07 Bv: I. E. Reep. P.E. LATERAL ENGINEERING FOR HILlNE HOMES PLAN 2112 [30-PSF SNOW, 110-MPH, EXP C, & SOC 02] Page 2 of 5 4. DESIGN CRITERIA FLAT ROOF SNOW LOAD LIVE LOAD: ROOF DEAD LOAD: EXTERIOR WALL DEAD LOAD: INTERIOR WALL DEAD LOAD: SEISMIC DESIGN CATEGORY: BASIC WIND SPEED: WIND EXPOSURE FACTOR: ALLOWABLE SOIL PRESSURE: MATERIAL SPECIFICATIONS: 1 500- sf Framing Material: No.2 Hem-Fir minimum. Wood Structural Panels: APA Rated. 10d Nails Diameter: 0.148-in 8d Nails Diameter: 0.131-in Concrete Strength @ 28-days: 2;500-psi Anchor Bolts: ASTM A307 Steel CONTENTS Project Information And Criteria Page 1 Description Page 3 Specifications And Design Criteria Page 3 Engineering Calculations Page 3 TABLES IN ATTACHMENT ~~~ Page A-1 Table A. elanl'2~."t~ Structural Specifications & Allowable Loads Table B. Wind Design Criteria Page A-2 Table C. Seismic Design Criteria Page A-3 Table D. Wind Loads Page A-4 Table E. Minimum Wind Loads Page A-5 Table F. Seismic Loads Page A-6 Table G. Controlling Shear Loads Page A-8 Table H. Wind Shear Wall Loads Page A-9 Table I. Seismic Shear Wall Loads Page A-1 0 Table J. Roof Diaphragm Load Calculations Page A-11 Reep Engineering & Consulting, Inc. Date: 03/30/07 Bv: I. E. Reep, P.E. LATERAL ENGINEERING FOR HILlNE HOMES PLAN 2112 [30-PSF SNOW, 110-MPH, EXP C, & SOC 02] Page 3 of 5 DESCRIPTION This rep'ort provides engineering calculations and structural design specifications for HiLine ~il.t!&4l,~;,4r~ Homes P.J~iqi2~i'~~ planned for construction in Port Angeles, Washington. The one-story house is 2~i1~12~sf in area plus a two-car garage. Design specifications are provided in Table A and wind and seismic design criteria, including calculations, are included in Tables Band C, respectively. Lateral engineering calculations are provided in Tables D through J. Calculations are performed using Microsoft Excel linked worksheets. SPECIFICATIONS AND DESIGN CRITERIA Design criteria are based on the 2003 International Building Code (IBC), 2001 National Design Specification, and the American Society of Civil Engineers (ASCE) Standard 7-02. Table A. Specifications of Structural Components And Fasteners Specifications are provided for size and spacing of anchor bolts, shear wall hold-downs, shear wall sheathing and nailing, shear transfer, and roof framing. Structural specifications are identified with respect to Wall Lines, which are shown on plan sheet S2. Table B. Wind Design Criteria Wind design criteria are based on a H;j])fiijp'l:lIJ:)a$'imViad~SR[~d!!fimiExp~ff'eI5actorr01 The simplified method per IBC Section 1609.6 is used for determining wind loads. Overturning moments due to wind forces are less than allowable restorative dead load moments as shown in Table F. Uplift loads for roof tributaries are calculated assuming the maximum uplift of 24.1-psf in the roof overhang Zone E applies to the tributary area. Table C. Seismic Design Criteria Seismic design loads are based on default Site Classification D per IBC Section 1615.1.1 ~r-r\"'"'wr'" ~,5 for a maximum flat roof snow load rJ;f)",dft3iOri:psf. The Equivalent Lateral Force Procedure of the American Society of Civil Engineers (ASCE) Standard 7-02 Section 9.5.5 is used for calculating seismic forces. ENGINEERING CALCULATIONS Engineering calculations are documented in Tables D through J based on specifications in Tables Band C. These tables provide the following information. Table D. Wind Loads Wind loads and overturning moments are calculated in Table D for two orthogonal directions, transverse and longitudinal. Calculated values are linked to Table G, Controlling Shear Loads to determine if wind, minimum wind, or seismic loads control design of lateral restraint. Unit uplift on the building is also calculated for both the transverse and longitudinal directions. Overturning loads due to design base winds are calculated with a link to Table F, Seismic Loads where they are compared to seismic and building restoring loads. l Reep Engineering & Consulting, Inc. Date: 03/30/07 By: I. E. Reep, P.E. LATERAL ENGINEERING FOR HILlNE HOMES PLAN 2112 [30-PSF SNOW, 110-MPH, EXP C, & SOC 02] Page 4 of 5 Table E. Minimum Wind Minimum wind loads are provided in Table E based on horizontal pressures equal to 10 psf and vertical pressures equal to zero per IBC Section 1609.2.1.1. Calculations are based on the simplified wind load method of IBC Section 1609.6. Calculations are performed for both transverse and longitudinal directions and linked to Table G for comparison to wind and seismic loads. Tables F. Seismic Loads Table F provides seismic shear loads for a maximum ftatr(fa'm1SIjll!,"~roa1:t13'd~$f. Flat roof snow loads are calculated in Table J to determine the added effect of flat roof snow loads greater than 30-psf per IBC Section 1716.5.1. Calculations are based on seismic design criteria in Table C and the Lateral Force Procedure method of ASCE Standard 7-02, Section 9.5.5. This procedure is limited to buildings of light frame construction not exceeding three stories in height for SDC 0 and higher. Seismic loads are calculated for transverse and longitudinal directions. Overturning moments are calculated in the table and compared to allowable restoring dead load moments. Although not required for one- story buildings, story drift and P-Delta effects are analyzed in this table per ASCE 7-02, Section 9.5.5.7 to verify building stability due to earthquake forces. Both story drift and building stability are well below allowable limits. Overturning loads due to design base seismic forces are calculated and compared to restoring loads. The building is stable with respect to overturning. Table G. Controlling Shear Loads Table G provides a summary of seismic shear loads. Shear load values from Tables 0, E, and F are compared to determine controlling lateral forces. The controlling values are linked to Tables H and I for calculating maximum shear wall loads for wind and seismic forces, respectively. Table H. Wind Shear Loads Table H provides transverse and longitudinal loads on the building structure including wall length, applied unit shear, shear wall length, resistive unit shear, unit drag load, unit dead load on shear walls, and hold-down loads for the various shear wall lengths based on controlling wind shear loads from Table I. Allowable dead loads are based on an allowance of 0.66 of the calculated dead load per IBC Section 1609.3 for load combinations using the allowable stress design method of analysis of wind loads. Table I. Seismic Shear Loads Table I provides transverse and longitudinal loads on the building structure including wall length, applied unit shear, shear wall length, resistive unit shear, unit drag load, unit dead load on shear walls, and hold-down loads for the various shear wall lengths based on seismic shear loads from Table G. Allowable dead loads are based on an allowance of 0.60 of the calculated dead load per ASCE Standard 7-02, Section 2.4.1 for load combinations using the allowable stress design method of analysis of seismic loads. Reep Engineering & Consulting, Inc. Date: 03/30/07 Bv: I. E. Reep. P.E. LATERAL ENGINEERING FOR HILlNE HOMES PLAN 2112 [30-PSF SNOW, 110-MPH, EXP e, & soe 02] Page 5 of 5 Table J. Roof Diaphragm & Snow Load Calculations Table J provides roof diaphragm load calculations for determining diaphragm shear per IBC 1620.4.3 for seismic loads and comparing these loads with wind and minimum wind loads from Table H. In addition, shear wall and diaphragm deflection are calculated to confirm that the diaphragm is flexible, that is the roof diaphragm to shear wall ratio is greater than 2.0 per ASCE 7-02, Section 9.5.2.3.1. Strength level seismic unit shear values are used to calculate deflections. Calculations are based on American Plywood Association (APA) Report T2002-17, Estimating Wood Structural Panel Diaphragm and Shear Wall Deflection, April 17, 2002. Uplift due to design base wind loads are calculated assuming the roof experiences a maximum uplift pressure from Table B for "Roof Wind Zone F Pressure". Allowable roof dead loads plus truss connections exceed uplift by an acceptable margin. Maximum Considered Earthquake Ground Motion Site Class D Fa = 1.00 Fv = 1.50 Zip Code = 98363 Central Lat. = 48.009706 deg Central Long. = -123.77836 deg 1.6 tl! 1.4 c .Q ..... 1.2 E "* 1 CJ CJ <C 0.8 ~ 13 0.6 al a. VJ 0.4 UJ o :!; 0.2 o o 0.5 1 1.5 2 Period, sec ~lqn-~))~ -DJ'<ZY'I1~ l Period, see MCE Sa, g 0.00 0.582 0.12 1.456 0.20 1.456 0.62 1.456 0.70 1.236 0.80 1.125 0.90 1.000 1.00 0.900 1.10 0.813 1.20 0.750 1.30 0.692 1.40 0.643 1.50 MOO 1.60 0.563 1.70 0.529 1.80 o.sOO 1.90 0.474 MO 0.450 Reep Engineering Consulting, Inc. Page A-1 Table A. Plan 2112 Structural Specifications & Allowable Loads (6 sheets). This table provides summary structural specifications. Additional details for standard specifications and calculation of allowable loads are provided in at the end of this table. Explanation of Wall Lines Shear walls and structural specifications are identified with Wall Lines. Lettered Wall Lines are generally identified from front to rear of the building and numbered Wall Lines start at the left and continue to the right (standard plan). For reversed plans, Wall Lines remain the same except numbered Wall Lines start at plan right. STRUCTURAL SPECIFICATIONS ~igpf'6!G6gila'6 ~R'ic;ifi~tiQni'fi('UI;~llJx ' . Maximum a lied shear er Tables H or I lb. Maximum anchor bolt Load 72-in o.c. minimum 2 anchors er mudsill lb. Allowable anchor bolt load for 1/2-in dia. A307 bolts with 7-in. embedment (Ib). InstaIl1/2-in dia. ASTM A307 anchor bolts @ 72-in o.c. per standard specification. ~.6~~twf~;~.!.I~tfQlfJigqyvp01~p~~~mG.ltigQ~" Wall Line C (Standard Garage Door Location) Maximum overturnin tension load er Tables H or I lb. 1,956 Install Simpson STHD8 Strap Tie Holdowns per standard specification (total of 4 STHD10s). Allowable tension load for Simpson STHD8 Strap Ties is 2,370-lb. 2,370 Wall Line D (Optional Garage Door Location) Maximum overturnin tension load er Tables H or I lb. Fasten aSB to mudsill with 8d nails @ 4-in o.c. Allowable overturning load = (1/2)(36/4)(117) = 527-lb. Wall Line 1 (Optional Garage Door Location) Maximum overturnin tension load er Tables H or I lb. 1,698 Install Simpson STHD8 Strap Tie Holdowns per standard specification (total of 4 STHD8s). Hold-downs not required on Wall Line 1 unless garage door is installed on this Wall Line. Allowable tension load for Simpson STHD8 Strap Ties is 2,370-lb. 2,370 Wall Line 2 Maximum overturnin tension load er Tables H or I lb. As shown on the plan (Sheet S2) fasten L TT20B Tension Tie to framing per standard specification. Fasten L TT20B to concrete foundation with 1/2-in Simpson Titen or Wedge-All anchor (controls) per standard specification (two L TT20Bs per shear wall segment (total of 4 L TT20Bs and anchors required). Allowable tension load for Simpson Wedge-All anchor = 1 ,088-lb (controls). 2,801 467 912 -141 527 760 All Exterior Wall Lines Maximum resistive unit shear load er Tables H or I Ibltt. 175 Apply 7/16-in. aSB wood structural panels to Hem-Fir framing members with 8d nails @ 6-in o.c. per standard specification. Allowable shear per standard specification = (0.50)(0.93)(785) = 365-lbltt. 365 Revised 01/24/07 Lateral Specs Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 1 --- ------ --~ Reep Engineering Consulting, Inc. Page A-1 Table A. Plan 2112 Structural Specifications & Allowable Loads (6 sheets). Wall Line 2 (GWB Shear Wall) Maximum resistive unit shear for seismic loads er Table I Ib/tt. 103 Fasten Simpson WB106 Wall Bracing to framing members per standard specification. Fasten 1/2-in. GWB drywall panels to both sides of Hem-Fir framing members per standard s ecification. Allowable shear for seismic loads per standard specification = 172-lblft. ShearTransferll~pecifications All Wall Lines Fasten double top plates together with 10d nails @ 12-in o.c. and 6-in o.c. at splices. Overlap splices 4-tt. minimum. Fasten OSB wall sheathing between shear wall segments at same fastener spacing as on shear walls. Fasten OSB panels to mudsills with minimum 8d nails @ 6-in o.c. Wall Lines 1, 2, & 4 (Gables) Maximum a lied unit shear er Tables H or I lb. 98 Fasten gable-end trusses to double top plates with 2-10d toenails @ 16-in o.c. Allowable load for (0.83)(2)(12/16)(1.6)(84) = 203-lblft. 203 Wall Lines B, D, 3, & 4 (Eaves) Maximum a lied unit shear er Tables H or I lb. 175 See Roof Framin S ecification for truss connections. Fasten per Roof Framing Specification for truss connections. 381 Wall Line 2 (GWB Shear Wall-to Roof Diaphragm) Maximum applied unit shear per Tables H or I (Ib/tt). 88 Fasten truss bottom chord to to late with 2-1 Od common nails 16-in o.c. Allowable load for2-10d toenails @ 16-in o.c. = (2)(0.83)(12/16)(1.6)(102) = 203-lblft. w_;I;~liirllj!~i~1+t{/ll1BRQf;i[)l~pb.rag I)1I~E.r~mii1g.f~p.~.cifi~a.tiQij$...% Roof Sheathing Maximum applied unit shear per Table J (Iblft). 113 Install 7/16-in unblocked wood structural panels per IBC Case 1. Fasten with 8-d nails @ 6-in o.c. on supported edges and 12-in o.c. in the field. See Truss Blocking & Boundary Nailing below for additional requirements. Basic allowable unit shear for wind loads = 645-lblft per NOS Table 4.2B for 7/16-in unblocked panel diaphragms. Adjustment Factor (AF) for ASO = 0.5. Adjusted 323 allowable unit shear = (0.50)(645) = 323-lb/tt. Truss Blocking & Boundary Nailing Fasten 2X4 vent blocking in each truss bay with 1-10d toenail into truss, each side. Fasten roof diaphragm to blocking with 8d nails @ 6-in o.c. Revised 01/24/07 Lateral Specs Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 2 Reep Engineering Consulting, Inc. Page A-1 Table A. Plan 2112 Structural Specifications & Allowable Loads (6 sheets). Truss Connections Maximum applied unit shear per Tables G = Q/LRoof (Ib/ft). Fasten truss tails to top plates with 2-10 toenails and a Simpson H2.5A or H1 Seismic & Hurricane Tie fastened to truss and top plates per manufactures instructions. (see sheet S3, Roof Framing Plan). Allowable load for 2-10d common toenails = (2)(0.83)(1.6)(102) = 271-lb per truss end. Allowable load for H2.5A or H1 Seismic & HurricaneTies = 11 O-Ib per truss end for Hem-Fir. Total allowable load per truss end = 271 + 110 = 381-lb per truss end = 381-lb/ft (H2.5A ties control lateral loads). Maximum net uplift on truss connection per Table J (Ib). Allowable uplift for H2.5A/H1 Seismic & Hurricane Ties = 535.lb/400-lb for Hem-Fir framing (H 1 ties control uplift loads). Truss Chord Splice Nailing Maximum a lied chord tension load er Tables J, C = T = M/b = v L /b8 lb. 1,197 Fasten exterior wall top plate splices together with 10d nails @ 6-in o.c. Minimum splice length = 48-in. Allowable chord splice tension load for 10d nails @ 6-in o.c. 131 381 245 400 1 ,469 Standard Structural Specifications & Allowable Loads QunfClali ~bcbi?ri.~.~Qlt. Basic allowable single shear for fastening Hem-Fir framing to concrete with 1/2-in bolts = 570-lb per NOS Table 11 E. Adjustment for 1 O-minute wind/seismic loads = 1.6 NOS Table 2.3.2. Allowable load = 1.6 570 = 912-lb. Basic allowable single shear for fastening Hem-Fir framing to concrete with 1/2- inX8.5-in long Simpson Wedge-All wedge anchors in minimum 2,500-psi concrete with 4.5-in embedment = 1,763-lb. Adjustments for no special inspection = 0.50, for 3-in edge distance = 0.80, and for wind/seismic loads = 1.33. Allowable load = 0.50 0.80 1.33 1,763 = 938-lb. Basic allowable single shear for fastening Hem-Fir framing to concrete with 1/2-in Simpson Titen HD anchors in minimum 2,500-psi concrete with 4.25-in embedment = 2,210-lb. Adjustments for 3-in edge distance = 0.44, and for 1 O-minute wind/seismic loads = 1.33. Allowable load = 0.40 1.33 2,210 = 1,176-lb. flolCI:li>aWn Simpson STHD8/10 Strap Ties Install Sim son STH08 Stra Tie Holdowns in 2,500- si concrete and 6-in minimum stem wall. Allowable tension load for Simpson STH08 Strap Ties is 2,385-lb for 2,500-psi concrete. Install Sim son STH010 Stra Tie Holdowns in 2,500- si concrete and 6-in minimum stem Allowable tension load for Simpson STH010 Strap Ties is 3,730-lb for 2,500-psi concrete. 912 938 1,176 2,385 3,730 Revised 01/24/07 Lateral Specs Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 3 Reep Engineering Consulting, Inc. Page A-1 Table A. Plan 2112 Structural Specifications & Allowable Loads (6 sheets). Simpson L TT20B/HTT16 Strap Ties Install Sim son L TT20B Tension Ties fastened to 3-in framin with 10-16d nails. Fasten Allowable tension load for Simpson L TT20B Tension Ties is 1 ,750-lb (controls) for 2,500- si concrete = 1,750-lb. Basic allowable tension load for 1/2-inX8-in long Simpson Titen HO anchors embeded 4.125-in into 2,500-psi concrete = 2,207 -lb. Adjustments are 0.50 for no special inspection, 0.83 for 3-in edge distance, and 1.33 wind/seismic loads. Allowable load = 0.50 0.83 1.33 2,207 = 1,218-lb controls. Basic allowable tension load for 1/2-inX8.5in long Simpson Wedge-All anchors embeded 4.5-in into 2,500-psi concrete = 2,045-lb. Adjustments are 0.50 for no special inspection, 0.80 for 3-in edge distance, and 1.33 for wind/seismic loads. Allowable load = 0.50 0.80 1.33 2,045 = 1,088-lb controls. Shear Wall Nailing Into Mudsill Fasten aSB anels to mudsill with 8d nails 6-in o.c. Basic allowable single shear load for 8d nails and Hem-Fir framing = 73-lb per NOS Table 11 N. Adjustment for 1 O-minute wind/seismic loads = 1.6 per NOS Table 2.3.2. Allowable shear load = (1.6)(73) = 117-lb/nail. Allowable shear wall overturning load for 4-ft panels fastened with two rows of 8d nails @ 6-in o.c. = 1/2(48/6 + 1 )(117) = 527-lb (controls). Fasten aSB panels to both mudsill and wall bottom plate with 8d nails @ 6-in o.c. Fasten bottom plate at each end of shear wall to foundation with 1/2-in. dia.X 8.5-in long Simpson Wedge Anchors (or equal) with 3X3X3/16-in flat washers at locations shown on Sheets S1/S2. Embed anchor 4.125-in into minimum 2,500-psi concrete as specified above. Allowable shear wall overturning load for 4-ft panels fastened with two rows of 8d nails 6-in o.c. = 1/2 2 48/6 + 1 117 = 1,054-lb controls. Nails (Per NOS Tables 11 Nand 2.3.2.) Sin Ie shear for 8d common 0.131-in with 1.5-in thickness Hem-Fir side members. Basic allowable shear for 8d common nails = 84-lb. Adjustment for 10-minute wind/seismic loads = 1.6. Allowable shear load = 1.6 84 = 134-lb. Single shear for1 Od common (0.148-in) with 1.5-in thickness Hem-Fir side members. Basic allowable shear for 10d common nails = 102-lb. Adjustment for 10-minute wind/seismic loads = 1.6. Allowable shear load = 1.6 102 = 163-lb. Single shear for1 Od common (0.148-in) with 1.5-in thickness Hem-Fir side members. Basic allowable shear for 10d common nails = 102-lb. Adjustment for 10-minute wind/seismic loads = 1.6. Allowable shear load = 1.6 102 = 163-lb. Single shear for 10d common toenails (0.148-in) with 1.5-in thickness Hem-Fir side members = 0.83 163 = 135-lb. 1,750 1,218 1,088 527 1,054 134 163 163 135 Revised 01/24/07 Lateral Specs Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 4 Reep Engineering Consulting, Inc. Page A-1 Table A. Plan 2112 Structural Specifications & Allowable Loads (6 sheets). Sti~~a ~ntjShealhill aSB Shear Wall Panels ( Per NOS Table 4.3A) Basic allowable shear for wind loads = 785-lb/ft per NOS Table 4.3A for ad nails @ 6-in o.c. on edges, 12-in o.C. in the field, & framing @ 16-in o.c. per Note b. Adjustments 0.50 for ASO and 0.93 for Hem-Fir framing. Allowable shear = (0.50)(0.93)(785) = 365-lb/ft. Basic allowable shear for wind loads = 1 ,205-lb/ft per NOS Table 4.3A for ad nails staggered @ 4-in o.c. on edges, 12-in o.c. in the field, & framing @ 16-in o.c. per Note b. Framing on panel edges is 3-in nominal. Adjustments are 0.50 for ASO and 0.93 for Hem-Fir framing. Allowable shear = (0.50)(0.93)(1,205) = 560-lb/ft. Basic allowable shear for seismic loads = 560-lb/ft per NOS Table 4.3A for framing @ 16-in o.c. per Note b. Adjustments are 0.50 for ASO and 0.93 for Hem-Fir framing. Allowable shear = (0.50)(0.93)(560) = 260-lb/ft. Basic allowable shear for seismic loads = 860-lb/ft per NOS Table 4.3A for ad nails staggered @ 4-in o.c. on edges, 12-in o.c. in the field, & framing @ 16-in o.c. per Note b. Framing on panel edges is 3-in nominal. Adjustments are 0.50 for ASO 0.93 for Hem-Fir framing. Allowable shear = (0.50)(0.93)(860) = 400-lb/ft. GWB Shear Wall Panels ( Per NOS Table 4.38) Fasten Simpson WB106 Wall Bracing metal straps with 2-16d nail to top and bottom wall plates and 1-8d nail to each stud per manufacturers instructions. Straps may be placed on wall in an X or V fashion. Fasten 1/2-in GWB panels to both sides of wall with NO.6 X 1.25-in long Type S or W drywall screws @ 4-in o.c. on edges and in the field with all edges blocked. Minimum framing material is Hem-Fir with maximum spacing of studs @ 16-in o.c. Basic allowable unit shear for wind loads = 300-lb/ft. Adjustment Factor (AF) for ASO is = 0.50 and AF for Hem-Fir framing = 0.93. Allowable shear = (2)(0.50)(0.93)(300) = 279-lb/ft. Basic allowable unit shear for seismic loads without flat metal strap bracing = 300-lb/ft. Adjustments are for ASO is = 0.50, 0.93 for Hem-Fir framing, and 0.30 for seismic response modification coefficient (R =2) using GWB sheathing per IBC Table 1617.7.2 (2/6.5 = 0.30). Allowable shear = (2)(0.50)(0.93)(0.30)(300) = 86-lb/ft. Basic allowable unit shear for seismic loads with flat metal strap bracing = 300- Ib/ft for framing @ 16-in o.c. per Note b. Adjustment factors for ASO is = 0.50, Hem- Fir framing = 0.93, and seismic response modification coefficient (R) GWB sheathing per IBC Table 1617.7.2 = 4/6.5 = 0.62. Allowable shear = (2)(0.50)(0.93)(0.62)(300) = 172-lb/ft. 365 560 260 400 279 86 172 Revised 01/24/07 Lateral Specs Plan 2112'{)7 Lateral-Djernes 110 mph, Exp C, & sDC D2.xls 3/3012007 5 ~ Reep Engineering Consulting, Inc. Page A-1 Table A. Plan 2112 Structural Specifications & Allowable Loads (6 sheets). *S6ea!~~TlI!;ipVsf~(l Nails Basic allowable load for 10d common nails fastened with 1.5-in side members = 102- Ib per NOS Table 11 N. Adjustment for 1 O-minute wind/seismic loads = 1.6. 163 Allowable load = 1.6 102 = 163-lb. Basic allowable load for 8d common nails fastened to minimum 3/4-in side members = 73-lb per NOS Table 11 N. Adjustment for 1 O-minute wind/seismic loads = 1.6. 117 Allowable load = 1.6 73 = 117 -lb. Toenails Allowable load for 10d common toenails 12-in o.c. = 0.83 1.6 102 = 135-lb/ft. Allowable load for 2-1 Od common toenails @ 16-in o.c. = (0.83)(2)(12/16)(1.6)(102) = 203-lb/ft. ladder Blocking Place 2X framing members laid flat on wall perpendicular to truss bottom chords at approximately equal spacing. Fasten blocking to top plate with 4-10d nails. Fasten each end of blockin to truss bottom chord with 2-10d nails. Allowable shear load er ladder block = 4 0.93 1.6 102 = 607-lb. 607 135 203 Revised 01/24/07 Lateral Specs Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 6 Table B. Wind Design Criteria. Description Value Description Value Basic Wind Speed V 3s (mph) 110 Vertical Pressures (pst) Simplified Method per IBC Section 1609.6 Yes Roof Zone E Pressure -12.9 Importance Factor - Iw 1.00 Roof Zone F Pressure -17.7 Roof Slope (6/12) 0.50 Roof Zone G Pressure -9.3 Mean Roof Height (ft) 11.8 Roof Zone H Pressure -14.2 Exposure & Heiqht Factor (Exposure D) 1.21 Roof Overhang Zone E Pressure -24.1 Horizontal Pressures (pst) Roof Overhang Zone F Pressure -20.6 Wall Zone A Pressure 29.2 Roof Overhang Zone G Pressure -17.7 Wall Zone C Pressure 21.1 Roof Overhang Zone H Pressure -14.2 Roof Zone B Pressure 4.7 Roof Zone D Pressure 4.8 Note: Plus and minus signs signify wind pressures acting toward and away from the surfaces, respectively per ASCE Standard 7-02. Building Measurement Values For Use in Tables E And F Left Wall Lenqth (ft) 32.0 Front Wall Length (ft) 28.0 Center Wall Length (ft) 16.0 Center Wall Length (ft) 52.0 Riqht Wall Lenqth (ft) 48.0 Rear Wall Length (ft) 52.0 Building Wall Height (ft) 7.8 Roof Height (ft) 8.0 Transverse Building Zone Measurements Longitudinal Building Zone Measurements Horizontal Windforce Loading Horizontal Windforce Loading Transverse Wall Zone A & B Width (ft) 6.4 Longitudinal Wall Zone A Width (ft) 6.4 Transverse Wall Zone C & D Width (ft) 45.6 Longitudinal Wall Zone C Width (ft) 41.6 Transverse Wall Zones A & C Height (ft) 7.8 Longitudinal Wall Zone A Height (ft) 9.4 Transverse Roof Zones B & D Height (ft) 8.0 Longitudinal Wall Zone C Height (ft) 12.6 Vertical Windforce Loading Vertical Windforce Loading Transverse Roof Zones E & F Width (ft) 6.4 Longitudinal Roof Zones E & F Width (ft) 6.4 Transverse Roof Zones G & H Width (ft) 45.6 Longitudinal Roof Zones G & H Width (ft) 41.6 Transverse Roof Zones E & F Lenqth (ft) 24.0 Lonqitudinal Roof Zones E & G Length (ft) 26.0 Transverse Roof Zones G & H Width (ft) 24.0 Longitudinal Roof Zones F & H Length (ft 26.0 Note: Width is measured perpendicular the wind direction and length parallel to the wind direction. Reep Engineering Consulting, Inc. Page A-2 Revised 01/15/07 Wind Criteria Plan 2112-07 Lateral-Ojernes 110 mph, Exp C, & SOC 02.xls 3/30/2007 l Table C. Seismic Design Criteria. Description Reference/Calculation Value BuildinQ Occupancy CateQorv ASCE Standard 7-02, Table 1-1 II Seismic Use Group ASCE Standard 7-02, Table 9.1.3 I Seismic Importance Factor, IE ASCE Standard 7-02, Table 9.1.4 1.0 Default Seismic Site Classification IBC Section 1615.1.1 0 Seismic Desiqn Cateqorv IBC Table 1616.3(1) 02 Response Modification Coefficient, R IBC Table 1617.6.2 6.5 Mean Buildinq Heiqht, h (ft) Per Plan 12.0 Building Period Coefficient: Ct (sec) ASCE Standard 7-02, Table 9.5.5.3.2 0.02 Buildinq Period, T = Cthj/4 (sec) ASCE Standard 7-02, Section 9.5.5.3.2 0.129 MCE Short Period Acceleration, SMS (g) Seismic Design Parameters Version 3.10 CD 1 .456 Site Short Period Acceleration, Sos (g) Sos = 2/3SMS per IBC Equation 16-41 0.971 MCE Long Period Acceleration, SM1 (g) Seismic DesiQn Parameters Version 3.10 CD 0.900 Site Long Period Acceleration, S01 (g) S01 = 2/3SM1 per IBC Equation 16-41 0.600 To = 0.2S01/S0S (sec) IBC Section 1615.1.4 0.124 Is - ti01/tiOS (sec) IBC Section 1615.1.4 0.618 liS t-'enoa 10 < I </ 15-( IBC Section 1615.1.4 Yes I IS ueslgn tipectral Kesponse, "a = ~os ( IBC Section 1615.1.4 Yes Equivalent Lateral Force Procedure ASCE 7-02 Section 9.5.5 Yes Seismic Design Coefficient: Cs = SosIE/R ASCE 7-02 Equation 9.5.5.2.1-1 0.149 Maximum ASD Unit Shear, vmax (Iblft) Calculation per Table I 105 Story Base Shear, VStorv (Ib) Calculation per Table G 6,799 Story Shear Ratio, rmax = 10vmaxNstory ASCE Standard 7-02, Section 9.5.2.4.2 0.155 Base Story Area: As (sf) Plans 2,461 Square Root of Base Story Area, As (ft) Calculation 49.6 Reduncanv Factor, p = 2 - 20/rm"y(AR)lIL ASCE Standard 7-02, Section 9.5.2.4.2 -0.600 Minimum Redunancv Factor, p ASCE Standard 7-02, Section 9.5.2.4.2 1.00 SL Seismic Shear: E = pQE + 0.2SosD 0.149 Seismic Load Combination Factor for ASD ASCE Standard 7-02, Section 2.4.1 0.700 ASD Base Shear: VASO = 0.7VSL Calculation 0.105 Maximum Flat Roof Snow Load (pst) Building Department 30.0 Reep Engineering Consulting, Inc. Page A-3 Revised 01/15/07 Seismic Criteria Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 Table D. Wind Loads. Wind Zone Zone Zone Zone Moment Moment Zone Pressure Width Ht./Leng. Area Force Arm (ft-Ib) (psf) (ft) (ft) (sf) (Ib) (ft) ;;i~11:\~" .... . ie, W, 11114'fif11}Htf @ 'ii~i it'i;7ij!:AorizQn,t~f1{Jl'an'~~~b~~) ~ihdi'L;p~~s tti!! ij!f.<f1111 :%i"d/'dI, "iiD!l At ''dY '1;". Transverse Wall Zone A 29.2 6.4 7.8 49.9 1 ,456 3.9 5,677 Transverse Wall Zone C 21.1 45.6 7.8 355.7 7,488 4.0 29,954 Transverse Roof Zone B 4.7 6.4 8.0 51.2 242 8.0 1,933 Transverse Roof Zone 0 4.8 45.6 8.0 364.8 1,766 8.0 14,125 Transverse Base Shear/Moment 10,951 51,689 Wind Shear Transferred to Roof Diaphragm Il!!11 1;;6;419 Wf'AffM+ Hi. '~i!wji'i A' j% ]F"';""'''tWt]jJ~ 1:" f,Jj11M;e,d!..~,~11!(mra5~y~t~e);tW!nQ;i(oa~~1::l1!i] i.g!~' 11!!, 'fll.. mf31 ,," Transverse Wall Zone E -12.9 6.4 24.0 153.6 -1,989 24.0 47,728 Transverse Wall Zone F -17.7 6.4 24.0 153.6 -2,713 8.0 21,708 Transverse Wall Zone G -9.3 45.6 24.0 1,094.4 -10,197 24.0 244,717 Transverse Wall Zone H -14.2 45.6 24.0 1,094.4 -15,493 8.0 123,947 Roof Overhang Zone E -24.1 6.4 1.3 8.5 -205 32.7 6,695 Roof Overhang Zone F -20.6 6.4 1.3 8.5 -175 -0.7 -117 Roof Overhang Zone G -17.7 45.6 1.3 60.6 -1,071 32.7 34,999 Roof Overhang Zone H -14.2 45.6 1.3 60.6 -859 -0.7 -572 Total Uplift/Overturning Moment on Building -32,702 530,794 Unit Uplift on Building (psf) -13.3 I'm .,"",;....@ " ''@fmm f'I!!!!~;i lfl9tizq"in~U{Long itlJcI i.n~.m~ind/l.:,pad$1!.f,f!!;i!1:!!!~f$' Killi!!If .}fi;\i, II!\~I A 'iUtit% AI '[jJlPW'lW Wi "W@'" iF" Longitudinal Wall Zone A 29.2 6.4 9.4 60.2 1,754 Longitudinal Wall Zone C 21.1 41.6 12.6 524.2 11,036 Longitudinal Base Shear 12,790 Wind Shear Transferred to Roof Diaphragm li::iili6;~~5 1Ft :!r~ !1'II!I:' rll~lr~~'If!!G~ll(~QngitydiPlil)!iW[nCl!~R,~9~!'1~ ,1: 11&' wi:::' r .:::':1::' 'ww Longitudinal Wall Zone E -12.9 6.4 25.0 160.0 -2,072 Lonqitudinal Wall Zone F -17.7 6.4 25.0 160.0 -2,827 Longitudinal Wall Zone G -9.3 41.6 25.0 1,040.0 -9,690 Longitudinal Wall Zone H -14.2 41.6 25.0 1,040.0 -14,723 Roof Overhang Zone E -24.1 6.4 1.0 6.4 -154 Roof Overhanq Zone F -20.6 6.4 1.0 6.4 -132 Roof Overhang Zone G -17.7 41.6 1.0 41.6 -735 Roof Overhang Zone H -14.2 41.6 1.0 41.6 -589 Total Uplift/Overturning Moment on Building -30,921 Unit Uplift on Building (psf) -12.6 ,d' i;\i\W)t" IT! """Hi , &piP. iiiw ""i""i ,,j@)iMi1WK .)f" '~@'!. !Ii"" !, ,ph Garage Wind Loads I'~ !'!fili!!!:'" , '!if'!. 1l6n~ itucUnal} ,Wi Q(:I IUoa(:ls!,& ;:, m Mf., ithlrA\t:w ,,~ Transverse Wall Zone A 29.2 6.4 9.0 57.6 1,680 4.5 7,559 Transverse Wall Zone C 21.1 15.6 10.5 163.8 3,449 5.3 18,105 Longitudinal Base Shear/Moment 2,564 25,664 Note: Plus and minus signs signify wind pressures acting toward and away from the surfaces, respectively per ASCE Standard 7-02. Reep Engineering Consulting, Inc. Page A-4 Revised 01/15/07 Wind Loads Plan 2112-07 Lateral-Ojernes 110 mph, Exp C, & SOC 02.xls 3/30/2007 Table E. Minimum Wind Loads. Wind Zone Zone Zone Zone Moment Moment Zone Pressure Width Ht./Leng. Area Force Arm (ft-Ib) (psf) (ft) (ft) (sf) (Ib) (ft) illi,A/(i!!/' ;!:~'~j 4/!ffilj;'I~I'" ~a\nsve!rs~ri!WinCfEJ!baasiiw~ dWiL'@mal !!!"J!!! ,\"",\\~,'\"'",\",,\"H .'.' " ." ... '" HifH@jW W""F!@ . W. m "'j1 Transverse Wall Zone A 10.0 6.4 7.8 49.9 499 3.9 1,947 Transverse Wall Zone C 10.0 45.6 7.8 355.7 3,557 4.0 14,227 Transverse Roof Zone B 10.0 6.4 8.0 51.2 512 8.0 4,096 Transverse Roof Zone 0 10.0 45.6 8.0 364.8 3,648 8.0 29,184 Transverse Base Shear/Moment 8,216 49,454 Wind Shear Transferred to Roof Diaphragm ",< 6;1Q8 l~lJlr ;If!11~1\ ~:!1~.i~I}J:\:F .. .. '~~, j.~i!1ii\,\h.Pii!jl\I!1Iiii\' Transverse Wall Zone E 0.0 6.4 24.0 153.6 0 24.0 0 Transverse Wall Zone F 0.0 6.4 24.0 153.6 0 8.0 0 Transverse Wall Zone G 0.0 45.6 24.0 1,094.4 0 24.0 0 Transverse Wall Zone H 0.0 45.6 24.0 1,094.4 0 8.0 0 Roof Overhang Zone E 0.0 6.4 1.3 8.5 0 32.7 0 Roof OverhanQ Zone F 0.0 6.4 1.3 8.5 0 -0.7 0 Roof Overhang Zone G 0.0 45.6 1.3 60.6 0 32.7 0 Roof Overhang Zone H 0.0 45.6 1.3 60.6 0 -0.7 0 Total Uplift/Overturning Moment on Building 0 49,454 Unit Uplift on Building (psf) 0.0 X'@@A ';;\ io!ii - I;'::;' ~!\!lJj\h I :E.Y\H{{/,MP41\w~ljji @ II P!!'!MM!WW'\l I .- Longitudinal Wall Zone A 10.0 6.4 9.4 60.2 602 Longitudinal Wall Zone C 10.0 41.6 12.6 524.2 5,242 Longitudinal Base Shear 5,843 Wind Shear Transferred to Roof Diaphragm .,< 2,922 I!~i!$;!!i;; .fl;;k \,~!~\. ;:ffijliill~I!\(~.i:tiPC!I...( LOdgit4~ i d'~! )'!:I.i ~~o/l!o'~!~,~M~11!;;:=0\Ai \4\;:~;:!/;;~ I@!!:i! ..M'!!!'!,.,,! LonQitudinal Wall Zone E 0.0 6.4 25.0 160.0 0 Longitudinal Wall Zone F 0.0 6.4 25.0 160.0 0 Longitudinal Wall Zone G 0.0 41.6 25.0 1,040.0 0 LonQitudinal Wall Zone H 0.0 41.6 25.0 1,040.0 0 Roof Overhang Zone E 0.0 6.4 1.0 6.4 0 Roof OverhanQ Zone F 0.0 6.4 1.0 6.4 0 Roof OverhanQ Zone G 0.0 41.6 1.0 41.6 0 Roof Overhang Zone H 0.0 41.6 1.0 41.6 0 Total Uplift/Overturning Moment on Building 0 Unit Uplift on Building (psf) 0.0 .r,ip'@i\W MiiiM@ WFiIJMMW" w!@' @ A;i!\! MjiIJ "".@@\!!!HMCc' ..IHI.''''\A'0 0HM"M'll@Mi'"'!%P @"'\\1%'\I. !MMi ..M mW&' t@ Garage Wind Loads I 1M i;WV))),"\::!ii~i\' ,!,!!!.. ',,,,,'.' Lbnt ituCl i nal)l!WioCl+Loaas %;!lli:~!!i,!jl!11.i' l'11:ffi11111;;) 'jHAi!!~ ';'.'.- ..--.- .-/-. -.- ,.,.. ."";;",,,~<.-,,,;;,";,.;",'i';""""';"I'8,,'j:@:i Transverse Wall Zone A 10.0 6.4 9.2 58.9 589 4.6 2,708 Transverse Wall Zone C 10.0 15.6 11.9 185.6 1,856 6.0 11,046 Longitudinal Base Shear/Moment 1,223 13,754 Note: Plus and minus signs signify wind pressures acting toward and away from the surfaces, respectively per ASCE Standard 7-02. Reep Engineering Consulting, Inc. Page A-5 Revised 01/15/07 Min. Wind Loads Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 Table F. Seismic Loads. Load Heightl Length Area Weight Shear Building Component Width Load (pst) (ft) (ft) (st) (Ib) (Ib) Roof Diaphraqm & Ceiling 15.0 2,461 36,915 3,859 20% of Flat Roof Snow Load, Pf 0.0 2,461 0 0 One-Half Exterior Walls 15.0 2,461 18,458 1,929 One-Half Partitions 10.0 1,933 9,665 1,010 Roof Diaphragm Tributary Dead Load 41,748 Base Shear ~'~ 7QQ I'm ^'#;;Pj~;ll'~~ .' "Mgrn~n~~!rqnn~l.Ii!i1~iig:nilU~'~'~i.Qg!~~I~ml~lF~@\jiW#"~P l(~b Force Dist. Moment (Ib) (ft) (ft-Ib) Roof Diaphragm & Ceiling 3,859 8.0 30,871 20% of Flat Roof Snow Load, Pf 0 8.0 0 Exterior Walls 1,929 8.0 15,435 Partitions 1,929 8.0 15,435 Total Moment Due to Seimic Forces 1,010 61,742 Total Moment Due to Wind Forces ;,;"530;7~..~ Building Dead Load Restorative Moments Roof Diaphraqm & Ceiling 36,915 16.0 590,640 20% of Flat Roof Snow Load, Pf 0 16.0 0 Exterior Walls 36,915 16.0 590,640 Partitions 19,330 16.0 309,280 Total Retorative Moment 1,490,560 6/10 of Restorative Moment ;';"i!:89~';e36 I,,,@,,,, ......'.1, I;dl B m#;:~~ ';:11";: ~ . gfl~;;~:;:;Fih~~ if.' ';;" .._~.. ;;!'.lllr~ll;r @"'F" ''0m. ?ill;!;, ,d'li::!bw :~ Item Reference Value Ps = Total vertical deSign load at and above level 1 = )\~{;E 9.5.5.7.2 36,915 hs = Story height (in) )\~C;E 9.5.5.7.2 96 Design story drift between level 1 and level 0 = From Table J 0.211 strength Level seismic shear force, VSL (I b) )\S(;E 9.5.5.7.2 9,518 Deflection amplification factor for aSB shear walls ((;0) )\S(;E Table 9.5.2.2 4.0 Check stability coefficient, e = PxLVVshsCd < 0.10 )\SCE 9.5.5.7.2 0.002 P-Delta Effects are not required to be consider if e </= ASCE 9.5.5.7.2 0.100 )\lIowable story dnft ~a - 0.020hs (in) 2003 IBC 1617.5.4 1.92 Reep Engineering Consulting, Inc. Page A-6 Revised 01/15/07 Seismic Loads Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 Table G. Controlinq Shear Loads. Main Floor level Second Floor level Transverse longitudinal Transverse longitudinal Wind Load (Ib) 6,479 6,395 N/A N/A Minimum Wind Load (Ib) 6,188 2,922 N/A N/A Seismic Load (Ib) "" '~.i7 I",\["!m!imf 'B'ii;i'f!i'6;"l.9.~. N/A N/A IRBii '""" . llillill@W. 04i, ,,$ Wj;; Garage Type load Transverse longitudinal Wind Load (Ib) .."m!,ii!'f!'f!'s ill\[I'2"564 "., Minimum Wind Load (I b) 1,223 Seismic Load (I b) Included Above Note: Bolded/shaded cells indicate controling shear loads. Reep Engineering Consulting, Inc. Page A-7 Revised 01/15/07Controling Loads Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 Table H. Wind Shear Wall Loads. Transverse loads Floor level Main Floor Level Second level Wall Identification 1 2 3 4 Check Wall Type aSB GWB aSB aSB Total Applied Shear (Ib) 2,362 2,801 2,801 1,080 9,044 Wall Lenqth (ft) 24.0 32.0 16.0 48.0 Applied Unit Shear (Ib/ft) 98 88 175 22 Shear Wall Lenqth (ft) 8.0 22.0 16.0 42.0 ijesistivetU riitSbead(loZft)t%' ~1111 !1111) 29$ I~l!:'~~~", 127'; ~fb.!175 Ij'lk,j;WWIZti , M'~~ll.;;;t;;;;i;). ;1~l~;II~, #lll!l\ i;jil1;, Mw.lllltlj&+ I Jlil'pp],l,1?k Shear Wall Heiqht (ft) 7.8 7.8 7.8 7.8 Unit DL on Wall (Ib/ft) 454 140 330 195 0.66fUnit DL on Walll (lb/ft) 302 93 220 130 Max. Hold-Down 4.0-ft SW (Ib) Ij",,'1'l'6~8 Max. Hold-Down 5.0-ft SW (Ib) 760 Max. Hold-Down 17 -ft SW (Ib) 200 -394 -839 Max. Hold-Down 18-ft SW (Ib) Max. Hold-Down 26.0-ft SW (Ib -1,489 Note: Maximum hold-down loads are identified in shaded and balded cells. longitudinal loads Floor level Main Floor level Second level Wall Identification A B C D Check Wall Type aSB aSB aSB aSB Total Applied Shear (I b) 1,066 2,132 2,132 1,066 6,395 Wall Lenqth (ft) 28.0 52.0 22.0 74.0 Applied Unit Shear (lb/ft) 38 41 97 14 Shear Wall Lenqth (ft) 18.0 21.5 6.0 38.0 Resistive Unitj$f\eari"(lp!ft)!w;ili"". ",'IV' 99 """"'L; ~ :ln~:i;Jj:" ""pl,:"I>w>;; .;n;!1i,j;jj!!I!~\ ~ I !"j!ll' iff'> Shear Wall Heiqht (ft) 7.8 7.8 7.8 7.8 Unit Wall DL (lb/ft) 360 390 1,100 360 0.66rUnit DL on Walll (Ib/ft) 240 260 733 240 Max. Hold-Down 3.0-ft SW (Ib) 111,67,1 -141 Max. Hold-Down 4.0-ft SW (Ib) -256 Max. Hold-Down 5.0-ft SW (Ib) -126 143 -376 Max. Hold-Down 6.0-ft SW (Ib) 13 Max. Hold-Down 8.0-ft SW (Ib) -498 Max. Hold-Down 1 0.5-ft SW (Ib) -592 Note: Maximum hold-down loads are identified in shaded and balded cells. Reep Engineering Consulting, Inc. Page A-8 Revised 01/15/0lNind Shear Loads Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 Table I. Seismic Shear Wall Loads. Transverse loads Floor level Main Floor level Second level Wall Identification 1 2 3 4 Check Wall Type ass GWS ass ass Total Applied Shear (Ib) 1,133 2,266 2,266 1,133 6,799 Wall LenQth (ft) 24.0 32.0 16.0 48.0 Applied Unit Shear (Ib/ft) 47 71 142 24 Shear Wall LenQth (ft) 8.0 22.0 16.0 42.0 s'esistiv~zl:Jnit1;Shij~"~r",l'lbZftlw"'nlWf. I AiPJ 42 tI ' Ai%iiWdiWKW 8~' In l~it1t ~l :@@ILy L~ " '- Shear Wall Heioht (ft) 7.8 7.8 7.8 7.8 Unit DL on Wall (Ib/ft 454 140 330 195 0.60rUnit DL on Wall] (Ib/ft 272 84 198 117 Max. Hold-Down 4.0-ft SW (Ib) 560 Max. Hold-Down 5.0-ft SW (Ib) 593 Max. Hold-Down 17 -ft SW I Ib 89 -479 -726 Max. Hold-Down 18-ft SW I Ib Max. Hold-Down 26.0-ft SW (Ib -1,311 Note: Maximum hold-down loads are identified in shaded and balded cells. longitudinal loads Floor level Main Floor level Second level Wall Identification A S C 0 Check Wall Type ass ass ass ass Total Applied Shear (Ib) 1,133 2,266 2,266 1,133 6,799 Wall Lenoth (ft) 28.0 52.0 22.0 74.0 Applied Unit Shear (Ib/ft) 40 44 103 15 Shear Wall LenQth (ft) 18.0 21.5 6.0 38.0 R~sistivel:Jnit:Shear ' 'I 6%ft) %;\\;'\\:1 %\%,@., ",.. 1'105 11"1';";318 "'30 ~li;:;"1 % 4, ,'" "Id'll;l;;"!} "",n:,;;;,' IAi fij Shear Wall Height (ft I 7.8 7.8 7.8 7.8 Unit Wall DL (Ib/ft) 360 390 1,100 360 0.60[Unit DL on Wall] (Ib/ft 216 234 660 216 Max. Hold-Down 3.0-ft SW (I b) ;"1~956 Max. Hold-Down 4.0-ft SW (Ib) -193 Max. Hold-Down 5.0-ft SW (Ib) -36 258 -301 Max. Hold-Down 6.0-ft SW (Ib) 141 Max. Hold-Down 8.0-ft SW (Ib) -373 Max. Hold-Down 10.5-ft SW (Ib) -406 Note: Maximum hold-down loads are identified in shaded and balded cells. Reep Engineering Consulting, Inc. Page A-9 Revised 01/1$a1smic Shear Loads Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 . Table J. Roof Diaphragm Calculations. Description Reference Equation/Comment Value Roof/Floor Diaphragms Load Calculations Diaphragm Shear/Weight IBC Sect. 1620.4.3 Fo/Wo = 0.21ESos = 0.194 Diaphragm Weight (Ib) Report Table G W 0 = wpARoof = 41 ,748 Strength Level Diaphragm Shear (I b) IBC Sect. 1620.4.3 Fp = 0.2IESOSWo = QE 8,105 Strength Level Diaphragm Unit Shear (Ib/ft) Calculation Vr = 1/2Q/b = 135 Service Level Seismic Diaphragm Shear (Ib) ASCE Sect. 2.4 Q = 0.7E = 0.7QE 5,673 Service Level Diaphragm Shear (Ib) Report Table G Q= 6,799 Diaphragm Span (ft) Design Drawings b= 30 Service Level Diaphragm Unit Shear (lblft) Calculation Vr = 1/2Q/b = 113 Shear Wall Deflection Calculations Area of Shear Wall Chords (in2) Design Drawings AChord = 2(1.5)(5.5) = 16.5 Shear Wall Height, h (ft) Design Drawings h= 7.8 Minimum Shear Wall Length, b (ft) Design Drawings b= 3.0 Maximum SL Seismic Unit Shear, Vr (Iblft) Table I v= 529 Shear Wall Bending Deflection, Yb (in) Calculation IVh = 8vrh3/EAb 0.031 Shear Wall Shear Deflection, Ys (in) Calculation Ys = vh/Gt 0.049 Shear Wall Nail Spacing, S (in) Specifications S= 6 Unit Shear Per Nail, vnail (Ib) APA Desiqn Guide1 vnail = vIS 67.5 Nail Load Factor, Vf APA Desiqn Guide1 Vf = vnail/616 0.110 Nail Slip Factor, en (in) APA Desiqn Guide1 en = (vn~n!616);s.UHj 0.00152 Nail Slip Deflection, Yns (in) APA Desiqn Guide1 Yns = 0.75hen 0.00074 I Hold-LJown LJetlectlon, Yhd (In) APA Report T2002-17, Table 3 for nails. 0.130 I otal Shear Wall LJetlectlon, Ysw (In) I Calculation Ysw - Yb +Ys + Yns + Yhc 0.211 IAllowable Story LJntt, Ya (In) IBC Table 1617.3.1 Ya =/< U.ULun 1.87 Roof Diaphragm Deflection Calculations Modulus of Elasticity-Diaphragm Chord, E (psi NOS No.2 Hem-Fir 1,300,000 Area of Diaohraam Chords (in2) Design Drawings AChord = 2(1.5)(5.5) = 16.5 Moment of Intertia of Diaohraam Chords (in4) Calculation I = 2Achord(b/2)2 = 1,069,200 Diaphraqm Length (in) Design Drawings L= 624 Blocked Bending Deflection (in) Calculation IVh = 5vrL 4/384EI 0.19 Shear Modulus, Gt (psi) Table A_31 7/16-in aSB 83,500 Shear Deflection (in) APA Desiqn Guide1 Ys = vL/4Gt 0.21 Diaphragm Nail Spacing, S (in) Specifications S= 6 Unit Shear Per Nail, vnail (Ib) APA Desian Guide1 Vnail = vIS 67.5 Nail Slip Factor, en (in) APA Desiqn Guide Table A-21 0.006 Nail Slip Deflection, Yns (in) APA Desian Guide 1 Yns = 0.188Len 0.059 Chord Splice Deflection, Yes (in) APA Report T2002-17, April 17, 2002 0.063 Total Blocked Deflection, Yd (in) Yd = Yb +Ys + Yns + Yes 0.52 Factor for Unblocked Diaphragms APA Report T2002-17, April 17, 2002 2.50 Unblocked Diaphragm Deflection (in) APA Desian Guide 1 Calculation 1.31 Check Dlaph.lShear Wall Deflection Ratlo>2.C Calculation Yd/ysw ~/> L.U"( 6.2 Diaphragm/Shear wall deflection ratio is > 2.0 so assumption that diaphragm is flexible is okay per ASCE 7-02 Standard, Section 9.5.2.3.1. Reep Engineering Consulting, Inc. Page A-1 0 Revised 01/25Jiiof Diaphragm Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 15 , Table J. Roof Diaphragm Calculations. Diaphragm Chord Splice & Stress Calculations End Wall Diaphragm Shear (Ib) Report Table G VEnd = Q/2 3,399 Diaphragm Span (ft) Design Drawings b= 30.0 Diaphragm Length (ft) Design Drawings L= 52.0 Diaphragm Unit Shear (Iblft) Calculation v r = V /b = 113 Diaphragm Moment (ft-Ib) Calculation M = vrLL./8 = 38,299 miap t! fag mi~~horCJ~~Q(be {IPJl!;ri%\??iiifb" "& j!i[J Q'a]culatiom . ':~b~!i:liIFilfffU '0W01iJiMttl1t,19t " "& m Allowable Nail Load (Ib) NDS Table 11 N H-F & 10d Common 102 Adjustment For Wind/Seismic Loads NDS Table 2.3.2 10-minute loads 1.6 Adjusted Allowable Nail Load (Ib) Calculation F = 1.6FNail 163.2 Minimum Number of Nails Required At Splice~ Calculation NN-Min = C/F A 7.3 Maximum Nail Spacing at Splices (in) S= 6.0 Minimum Splice Length (in) Calculation LSPliee = SNN-Min 44.0 Desiqn Splice Length (in) Design Drawings 9-10d Common Nails 48.0 ~!!()\.vgpl~i~lJ)icTphragmf'~no~CJkfiQ'fce~1;~lbF:'m~.tF 'i"'" .' ,'iWhw..i!'i Sf;;; 'M;' "Wl II Axial Chord Stess (psi) Calculation Fell = CIA = T/A 73 Allowable Parallel Compressive Stress (psi) WWPA Table 1 NO.2 Hem-Fir 1,250 Allowable Parallel Tensile Stress (psi) WWPA Table 1 NO.2 Hem-Fir 500 Note 1: Diaphragms And Shear Wall - Design/Construction Guide, November 2004. j@UWl&t' @ihj@& .'MkMWI[Jb @WHAk", F _iiWm ,,:! i1i'mh, m It<k\%iiiA '@'\@iA .v!iWWt.......i"!!W.. Roof Uplift Calculations Description Reference Equation/Comment Value Roof Truss Span, b (ft) DesiQn DrawinQs 32.0 Tributary Area to Truss Connection (sf) Trusses @ 24-in 0.( A = 2b/2 = b 32.0 Maximum Wind Uplift Pressure (psf) Zone F For 120-mph & Wind Exposure C -17.7 Maximum Wind Uplift Load At Connection (Ib) Fup = pA -565 Allowable Roof Unit Dead Load, Wdl (psf) DeSign Cntena Wdl - L/"{I OJ 10.0 Roof Dead Load to Truss Connection (Ib) rOL - WdlA 320 Net Load to Truss Connection (Ib) FNel = Fup + FOL ';" -245 j Allowable Uplift For Simpson H2.5A Clip (Ib) SPF/Hem-Fir with 160% Increase 535 Maximum Wind Uplift Pressure (pst) Zone F For 11 O-mph & Wind Exposure C -17.7 Maximum Wind Uplift Load At Connection (I b) F Up = pA -565 Net Load to Truss Connection (Ib) FNel - Fup + FOL ~i" It::' Allowable Uplift For Simpson H 1 Clip (Ib) SPF/Hem-Fir with 160% Increase "i"i Jt"AI In .,... Reep Engineering Consulting, Inc. Page A-1 0 Revised 01/2511iof Diaphragm Plan 2112-07 Lateral-Djernes 110 mph, Exp C, & SDC D2.xls 3/30/2007 16