Loading...
HomeMy WebLinkAbout1629 W 11th St Technical - BuildingrIV al�Ia�z Duane Boice RE. President DATE 09/5/06 Engineering Technical Services Inc. PROJECT Timber Iron Erectors114'x36'x10' PROJECT LOCATION Sequim, Washington E.T.S. DESIGNER. rettlifSSinith CONTACT Dave Richardson STRUCTURAL': CALCULATIONS f COATEIeSHE'.ET It .0' 4 6: Comments LOADING ROOF LOADING 25/4/0/1 WIND LOADING 100 MPH, EXPOSURE "C" SEISMIC SITE CLASS 271 469th Ave., PO Box 308, Tea, SD 57064 Phone: (605) 498-1290 Fax: (605) 498-1299 www.engtecsrv.com -4: Note: THE SEAL AFFIXED TO THIS PAGE APPLIES TO THE COMPLETE SET OF CALCULATIONS. •VONAL fr'17:inri ExpinEs Project Name. Timber Iron Erectors 36x14 Shop Project Location. Sequim, WA Initial Information Building Width (ft) Building Length (ft) Sidewall Height (ft) Roof Pitch Roof Height (ft) Design Loads Horizontal Loads Transverse Direction Location End Zone of wall End Zone of roof Interior Zone of wall Interior Zone of roof Horizontal Loads Longitudinal Direction Location End Zone of wall Interior Zone of wall Vertical Loads Transverse Location End Zone windward ro End Zone leeward roo Interior Zone windwarc Interior Zone leeward r Vertical Loads Longitudinal Direction Location End Zone windward ro End Zone leeward roo Interior Zone windwarc Interior Zone leeward r 14 26 9.5 4 2.333 Ptw Ptr Ptw Ptr PiW P1W Pwr Plr Pwr Pir Pwr PIr Pwr Per Direction Wind Exposure Wind Speed (mph) Mean Roof Height (ft) Roof Angle End Zone Width (ft) Importance factor (kJ Height Exp Load (psf) 21 36 6 05 14 17 3.38 Adjustment 1.21 1.21 1.21 1.21 Height Exp Load (psf) Adjustment 15.90 1.21 10 50 1.21 Height Exp Load (psf) Adjustment 19 10 13 04 13.30 9.92 1.21 1.21 1.21 1.21 Height Exp Load (psf) Adjustment 19 10 10.80 13.30 8 40 1.21 1.21 1.21 1.21 C 100 10 667 18 435 3 1 Adjusted Importance Design Load (osfl Factor Load (psf) 25 85 1 25 85 7.32 1 7 32 17 15 1 17 15 4 09 1 -4 09 Adjusted Importance Design Load (psf) Factor Load (psf) 19.24 1 19.24 12.71 1 12.71 Adjusted ImportancE Design Load (psf) Factor Load (psf) 23 11 1 23 11 15 78 1 15 78 16 09 1 16 09 -12.01 1 -12.01 Adjusted ImportancE Design Load (osf) Factor Load (psf) 23 11 1 -23 11 13 07 1 13 07 16.09 1 -16 09 10 16 1 -10 16 Pressures for roof angles were interpolated from Table 1609 6.2.1(1) 2003 IBC If pressure is less than zero use zero (footnote c. Table 1609 6.2 1(1) 2003 IBC) Positive values are inward acting pressure negative values are outward acting pressure. Transverse Direction. 1) 25.85 PSF 3 ft 4 8 ft 344 2) 17 15 PSF 10 ft 4.8 ft 831 F= 1175 Longitudinal Direction. ENTER TOTAL LENGTH OF OPENINGS IN ENDWALL 1 FEET ENTER TOTAL LENGTH OF OPENING IN ENDWALL 2 FEET 1175 12 575 20 575 8 Lateral Analysis 107 PLF G 133 fc. k 98 PLF �K 1) 19.24 PSF 3 ft 4.8 ft 256 2) 19.24 PSF 1/2 2.6 ft 25 3) 12 71 PSF 4.2 ft 0.2 ft 12 4) 12.71 PSF 4.2 ft 4.8 ft 253 5) 12 71 PSF 1/2 4 4 ft 28 F= 575 29 PLF �O ENTER TOTAL LENGTH OF OPENING IN SIDEWALL 1 FEET ENTER TOTAL LENGTH OF OPENING IN SIDEWALL 2 �n`1'�t; FEET 72 PLF Capacity of 29 aaoe wall steel: 1) 29 gage steel with standard screw patterns 133 PLF 2) 29 gage steel with standard screw pattern plus stitch screws at panel edges. 220 PLF 2� Timber Iron Erectors 14'x36' Shop Date and Time 9/1/2006 1 35 31 PM MCE Ground Motion Conterminous 48 States Zip Code 98382 Central Latitude 48 006299 Central Longitude -123 088688 Period MCE Sa (sec) %g) 0.2 122.2 MCE Value of Ss Site Class B 1 0 044 5 MCE Value of S1 Site Class B Spectral Parameters for Site Class D 0.2 123 4 Sa FaSs Fa 1 01 1 0 069 0 Sa FvS1 Fv 1 55 CI 2.1q) 0 2 3 svi L0 <9) D am wt SE3 s M ti L S 1 t-e c z. 2 S n5 tL N (2 6 -3 S4,- 7,5- 3(9' -2 5A-5 14' 2 tS 1 a`) uos 1r'EELLS 553 4� wind sh�r 3/ Effective Wind 85 Zone Area 1 10 6.4 I 15.7 1 20 6.1 I 15.4 Roof 1 50 5.4 I 14.8 0 7 1 100 5.1 I 144 degrees 2 10 6.4 I -26.4 2 20 6.1 I -23.6 2 50 5.4 I 19.8 2 100 5.1 I 17 1 3 10 6.4 I 39.7 3 20 6.1 I 32.9 3 50 5.4 I -23.8 3 100 5.1 I 17 1 1 10 9.1 I 14.4 1 20 8.2 I 14.0 Roof 1 50 7.3 I 13.4 7 27 1 100 6.4 I 13.1 degrees 2 10 9.1 I -25.0 2 20 8.2 I -23.0 2 50 7.3 I -20.4 2 100 6.4 I -18.4 3 10 9.1 I -37.0 3 20 8.2 I 34.6 3 50 7.3 I 31.5 3 100 6.4 I -29.0 1 10 14.4 I 15.7 1 20 14.0 I 14.9 Roof 1 50 13.4 I 13.9 27 45 1 100 13.1 I -13.1 degrees 2 10 I 14.4 I 18.4 2 20 14.0 I 17.5 2 50 13.4 I 16.6 2 100 I 13.1 I 15.7 3 10 14 4 18.4 3 20 14.0 17.5 3 50 13.4 I 16.6 3 100 13.1 15.7 4 10 15.7 I 17 1 4 20 15.0 I 16.3 4 50 14.0 I -15.4 Wall 4 100 13.4 I 14.8 4 500 11.7 I 13.1 5 10 15.7 I -21 1 5 20 15.0 I 19.6 5 50 14.0 I 17.8 5 100 13.4 I 16.3 5 500 11.7 I 13.1 71 6.8 62 5.7 71 6.8 62 5.7 71 6.8 62 5.7 10.2 9.3 8.1 71 10.2 9.3 8.1 71 102 9.3 8.1 71 16.1 15.7 15.1 14.6 16.1 15.7 15.1 14.6 16.1 15.7 15.1 14.6 17.7 16.8 15.7 15.0 132 17.7 16.8 15.7 15.0 13.2 90 Basic Wind Speed 100 110 120 130 140 150 170 17.7 I 8.8 I -21.8 I 10.8 I -26.4 I 12.7 I 31.3 172 I 8.3 I -212 I 10.0 I -25.7 I 12.0 I 30.5 16.6 I 7.6 I -20.4 I 92 I -24.8 I 10.9 I -29.5 -16.1 I 7.0 I -20.0 I 8.5 I -24.1 I 10.0 I -28.7 -29.5 I 8.8 I 36.5 I 10.8 I -442 I 12.7 I 52.6 -26.4 I 8.3 I 32.7 I 10.0 I 39.4 I 12.0 I -46.9 -22.3 I 7.6 I -27.5 I 92 I 33.3 I 10.9 I -39.6 19.1 I 7.0 I -23.6 I 8.5 I -28.6 I 10.0 I 34.0 -44.5 I 8.8 I -54.9 I 10.8 I -66.6 I 12.7 I -79.1 -36.9 I 8.3 I -45.5 I 10.0 I -55.1 I 12.0 I -65.6 -26.7 I 7.6 I 33.0 I 92 I -40.1 I 10.9 I -47.6 19.1 I 7.0 I -23.6 I 8.5 I -28.6 I 10.0 I 34.0 16.1 I 12.6 I -20.0 I 15.1 I -24.1 I 18.0 I -28.7 15.7 I 11 4 I 19.4 I 13.8 I -23.5 I 16.5 I -27.8 15.1 9.9 I 18.6 I 12.1 I -22.5 I 14.4 I -26.9 14.6 I 8.8 I 18.0 I 10.8 I -21.9 I 12.7 I -26.0 -28.1 I 12.6 I 34.7 I 15.1 I 42.0 I 18.0 I 50.0 -25.9 I 11 4 I 31.9 I 13.8 I 38.6 I 16.5 I -46.0 -22.9 I 9.9 I -28.2 I 12.1 I 34 1 I 14.4 I -40.7 -20.6 I 8.8 I -25.4 I 10.8 I 30.9 I 12.7 I 36.7 -41.5 I 12.6 51.3 I 15.1 I -62.1 I 18.0 I -73.8 38.8 I 11.4 -47.9 I 13.8 I 58.0 I 16.5 I -69.1 35.2 I 9.9 -43.6 I 12.1 I 52.6 I 14.4 I -62.7 I 8.8 -402 I 10.8 I -48.6 I 12.7 I -58.0 17.7 I 20.0 I -21.8 I 24.1 I -26.4 I 28.7 I -31.3 I 19.4 I -20.7 I 23.5 I -25.0 I 27.8 I -29.8 32.5 16.7 15.5 I 18.6 I 19.2 I 22.5 I -232 I 26.9 I -27.6 I 14.6 I 18.0 I 18.0 I 21.9 I -21.9 I 26.0 I -26.0 I -20.6 I 20.0 -25.4 241 30.9 I 28.7 I -36.7 19.7 I 19.4 -24.3 23.5 -29.4 I 27.8 I 35.1 I 18.5 I 18.6 I -22.9 22.5 I -27.7 I 26.9 I 32.9 I 17.7 I 18.0 I -21.8 I 21.9 I -26.4 I 26.0 I -31.3 I -20.6 I 20.0 I -25.4 I 24.1 I -30.9 I 28.7 I 36.7 I 19.7 I 19.4 I -24.3 I 23.5 I -29.4 I 27.8 I 35.1 18.5 I 18.6 I -22.9 I 22.5 I -27.7 I 26.9 I 32.9 17.7 I 18.0 I -21.8 I 21.9 I -26.4 I 26.0 I -31.3 19.1 I 21.8 I -23.6 I 26.4 I -28.6 I 31.3 I 34.0 18.3 I 20.8 I -22.6 I 25.2 I -27.3 I 29.9 I -32.5 17.3 I 19.5 I -21.3 I 23.6 I -25.8 I 28.1 I 30.7 16.5 I 18.5 I -20.3 I 22.4 I -24.7 I 26.6 I -29.3 14.6 I 16.2 I 18.0 I 19.6 I -21.9 I 23.4 I -26.0 -23.6 I 21.8 I -292 I 26.4 I -352 I 31.3 I -42.0 -22.0 I 20.8 I -27.2 I 252 I 32.9 I 29.9 I 39.2 -20.0 I 19.5 I -24.6 I 23.6 I -29.8 I 28.1 I -35.5 18.3 I 18.5 I -22.6 I 22.4 I -27.3 I 26.6 I 32.5 14.6 I 16.2 I 18.0 I 19.6 I -21.9 I 23.4 I -26.0 15.0 14.0 12.8 11.9 15.0 14.0 12.8 11.9 15.0 14.0 12.8 11.9 212 19.4 16.8 15.0 212 19.4 16.8 15.0 21.2 19.4 16.8 15.0 33.6 32.7 31.5 30.5 33.6 32.7 31.5 30.5 33.6 32.7 31.5 30.5 36.8 35.1 32.9 31.3 27.5 36.8 35.1 32.9 31.3 27.5 36.8 35.8 34.6 33.6 -61.7 552 -46.5 39.9 -92.9 -77.0 55.9 -39.9 -32.7 31.5 30.5 -58.6 -54.0 -47.7 -43.1 -86.6 -81 1 -73.6 -68.0 -36.8 17.3 16.2 14.9 13.8 17.3 16.2 14.9 13.8 17.3 162 14.9 13.8 33.6 24.6 22.4 19.5 17.3 24.6 22.4 19.5 17.3 24.6 22.4 19.5 17.3 39.1 35.0 38.0 32.4 36.5 30.5 35.5 -43.1 39.1 -41 1 38.0 38.7 36.5 36.8 35.5 -43.1 39.1 -41 1 38.0 -38.7 36.5 36.8 35.5 39.9 42.7 382 40.8 36.1 38.2 34 4 36.3 30.5 31.8 -49.2 I 42.7 -46.0 I 40.8 -41.5 38.2 -38.2 I 36.3 -30.5 I 31.8 -42.7 -41.6 -40.2 39.1 -71.6 -64.0 -53.8 -462 107.7 -89.3 -64.7 -46.2 39.1 38.0 -36.5 35.5 -68.0 -62.6 55.3 -49.9 100.6 -94.0 -85.3 -78.8 -42.7 -40.5 37.6 35.5 -49.9 -47.7 -44.9 -42.7 -49.9 -47.7 -44.9 -42.7 -462 -44.4 -41.9 39.9 35.5 57 1 53.2 -48.2 -44.4 35.5 20.0 18.6 17 1 15.7 20.0 18.6 171 15.7 20.0 18.6 17 1 15.7 282 25.8 22.4 20.0 28.2 25.8 22.4 20.0 28.2 25.8 22.4 20.0 44.8 43.6 -46.5 I 56.0 41.9 -43.2 53.8 40.7 -40.7 52.3 44.8 -57.2 57.6 43.6 54.8 56.0 41.9 51 4 53.8 40.7 -49.0 52.3 44.8 -57.2 I 57.6 43.6 54.8 I 56.0 41.9 51 4 I 53.8 40.7 -49.0 49.0 46.8 43.8 41.6 36.5 49.0 46.8 43.8 41.6 36.5 -49.0 -47.7 -46.1 -44.8 -822 -73.4 -61.8 53.1 123.7 102.5 -74.4 -53.1 -44.8 I 36.3 -43.6 -41.9 -40.7 -78.0 -71.8 -63.5 25.5 24.0 21.9 20.2 25.5 24.0 21.9 202 25.5 24.0 21.9 20.2 33.0 28.8 25.5 36.3 33.0 28.8 57.2 I 25.5 115.4 36.3 -107.9 33.0 -98.0 I 28.8 -90.5 I 25.5 -49.0 I 57.6 53.1 50.9 -48.0 -45.7 -40.7 -65.6 -60.7 55.3 50.9 -40.7 52.3 62.9 60.0 56.4 53.5 46.9 62.9 60.0 56.4 53.5 46.9 4/ -62.9 -61 3 59.2 57.6 105.5 -94.4 -79.5 -68.2 158.9 131.5 -95.5 -682 57.6 56.0 53.8 52.3 100.2 -92.2 -81.6 -73.6 148.2 138.5 125.8 116.2 -62.9 59.7 55.4 52.3 -73.6 70.3 -66.1 -62.9 -73.6 -70.3 -66 1 -62.9 -68.2 -65.5 -61.7 58.8 52.3 -84.2 -78.5 -71.0 -65.5 52.3 WL 16.2 PSF Moment w1 1829 ft-lb DL =5 PSF SL PSF SL +DL 30 PSF 10 Footings: Downward. 2100 2400 458 1264 Sidewall Column Design Enter Truss Spacing OC 1 15 Allowable Increase for Snow 1050 908.5 /bolt 1 16 162 1 PLF 7 2100 Load Combinations 0 6DL WL DL +0 75SL +0 75WL DL +SL Soil Bearing Capacity ,00: PSF 20% Increase Allowed per foot of depth below 1 12 7 Diameter Connections. Uplift: Overhang Length feet 1309PSF OC* 7 458# Use 5/8" P bolts with a capacity of 9 bolt 1 6 Allowable Increase for Wind 0.36 Use 1 Bolt Per Truss to Post Connection Use 1 Bolts per Bearing Block 1.27 PM 9/1/2006 Timber Iron Erectors 36x14 Shop 9.5' Sidewall Columns 0.6DL +WL Bending width (b)or (d depth (d) or (d length (1 or (l length (1 or (1 Moment (M) E_ Actual Bending Stress f (6 *M) /(b *(d ^2)) 4 inches 6 inches 114 inches 24 inches 1829 14 ft*Ib 1100000 psi Theoretical Bending Capacity F'b= FbCDCMCiCLCFCVCfuCiCrCcCf F CD C Ct CL CF Cv C fu Ci Cr Cc Cr 675 16 1 1 0 984 1 1 1 1 1 1 1 duration moisture temperature stability size volume fiat use incision repetitive member curvature form (weak axis depth) (strong axis depth) (strong axis unsupported length) (weak axis unsupported length) (modulus of elasticity) 914.571 psi pg 16 2001 nds 1062:653 psi Tables pg 9 pg 53 pg 9 pg 15 (see below) pg 50 pg 34 (see below) pg 53 pg 2 pg 27 pg 34 pg 15 C and Cv cannot be used at the same time. Use the smaller of the two and the larger is to 1 C ((1 +(FbE /Fb 1 9)- (sUrt((( +(FbE /Fb 1 9 2 ((FbE /Fb 0 95 KbE le 0 300 203 820 l lu1 /d1 (chose higher one) lu2Id2 C K 21 /L) ^(1/()) *(((12/d) "(1/x)) 5 251b)"(1 ix)) K 1 L= 95 x 10 (20 for SYP 10 for everything else) 19 6 1 189 from Figure 3G pg 18 2001 nds Stress Ratio 0 8606 2001 sup 2001 nds 2001 sup Table 4F 2001 nds 2001 nds 2001 sup Table 4E 2001 nds 2001 sup Table 4F 2001 nds 2001 nds 2001 nds 2001 nds 0'984 Fb E' l u to find l R 2 a FbE 1080 0 1100000 0 114 764 43175 (if greater than 1 0 use 1 0) (for Glue Lam. Only) 1.27 PM 9/1/2006 Deflection Allowable (U360)= 0 3167 Allowable (U240)= .0 4750 Allowable (U180)= 0.6333 Capacity (5w11`4)/(384E1) Capacity (PL ^3)/(48EI) w ratio L/360 stress ratio 1 18 L/240 stress ratio 0 79 L/180 stress ratio 0.59 L/120 stress ratio .0 39 L/90 stress ratio 0 30 L/600 stress ratio 1 9746418 L/480 stress ratio 1.5797134 Deflection L/ 304 w= P= 1= must be less than allowable 0. 0 0: 0 total load 162.14 0 72 03.752 uniform load 0 point load midspan P ratio 0 plf lbs in ^4 (live load floor) (total load floor live load roof) (total load roof) (total load roof) (total load roof) live load 162 14 0 72. live load only 0 38: 0 w ratio 1 18 0 79 059 0 39 0.30 1 9746418 1.57971344 P ratio 0 0 0: 0 0 1:27 PM 9/1/2006 Timber Iron Erectors 36x14 Shop 9 5' Sidewall Columns 0.6DL +WL Compression width (b)or (d depth (d) or (d length (I length (1 Area 24 inches Force 210 0 lb E 1100000 psi Ke 1 Effective length (I, Effective length (l Actual Compression fc Force /Area Theoretical Compression Capacity F' F CD Cm c CF C F CD CM C1= CF Ci CT= C enter values K c l 500 1 15 1 1 1 1 1 0 8232 iding and Axial Compression (fJFC') +ftJ(Fe 4 inches 6 inches 114 inches 24 inches 114 inches 24 inches duration moisture temperature size incision 8 750 psi (weak axis depth) (strong axis depth) (strong axis unsupported length) (weak axis unsupported length) (modulus of elasticity) 473 3404 psi 11360 17 lbs Tables pg 9 pg 53 pg 9 pg 25 pg 27 pg 29 pg 19 (see below) C ((1 +(Fc /Fc /2c)- (sgrt(((1 Fc /Fc /2c) ^2)- ((Fc /Fc /c))) 0 300 08 19 chose the higher between (l /d and (I /d (used to calculate F 0 87 (must be or to 1 0) stress rati from Figure 3G pg 18 2001 nds 2001 sup 2001 nds 2001 sup Table 4F 2001 nds 2001 nds 2001 nds 2001 nds 2001 nds 0 8232 calculated F E' l /d I /d2 FcE1 FcE2 0 018 575 1100000 19 6 914 9167 4 1.27 PM 9/1/2006 Timber Iron Erectors 36x14 9.5' Sidewall Columns DL +O. Bending width (b)or (d depth (d) or (d length (I or (I length (1 or (1 Moment (M) E_ Actual Bending Stress f (6 *M) /(b *(d ^2)) Fb CD= CM CI CL CF Cv Chi C, C C Cr KbE l 4 6 114 24 1371 86 1100000 675 16 1 1 0.984 1 1 1 1 1 1 1 0 300 203 820 Shop 75SL +0.75WL inches inches inches inches ft*lb psi Theoretical Bending Capacity F' F -685 928 psi duration moisture temperature stability size volume flat use incision repetitive member curvature form C and C cannot be used at the same time. Use the smaller of the two and the larger is to 1 C ((1 +(F /F *))/1 9 (sgrt((( 1 +(FbE /Fb 1 9 ^2 ((FbE /Fb 0 95 IJd luf /d1 (chose higher one) lug /d2 C K 21 /L) ^(1/x)) *(((12/d) ^(1/x)) *(((5 125/b) ^(1 /x)) K L= x= 1 (weak axis depth) (strong axis depth) (strong axis unsupported length) (weak axis unsupported length) (modulus of elasticity) 1062.653 psi Tables pg 9 pg 53 pg 9 pg 15 (see below) pg 50 pg 34 (see below) pg 53 pg 27 pg 27 pg 34 pg 15 95 10 (20 for SYP, 10 for everything else) 1 189 from Figure 3G pg 18 2001 nds pg 16 2001 nds 0:984. Stress Ratio 0.6455 2001 sup 2001 nds 2001 sup Table 4F 2001 nds 2001 nds 2001 sup Table 4E 2001 nds 2001 sup Table 4F 2001 nds 2001 nds 2001 nds 2001 nds Fb E' I find l 19 RB 6 FbE 1080 0 1100000 0 114 76 4 4317 5 (if greater than 1 0 use 1 0) (for Glue Lam. Only) 1 :27 PM 9/1/2006 Timber Iron Erectors 36x14 9.5' Sidewall Columns DL +O Compression width (b)or (d depth (d) or (d length (I,) length (12) Area Force E= Ke 4 6 114 24 24 1662.5 1100000 1 Effective length (I, 114 Effective length (l 24 Actual Compression fc Force /Area Theoretical Compression Capacity F',= F CD CM Ct CF C1 C F Co CM Ct CF Ct CT= C enter values KcE c l 500 1 15 1 1 1 1 1 0.8232 ding and Axial Compression (fdFc fb/(Fb (fc /FcE))) Shop 75SL +0.75WL inches inches inches inches inches lb psi inches inches duration moisture temperature size incision 69.271 psi (weak axis depth) (strong axis depth) (strong axis unsupported length) (weak axis unsupported length) (modulus of elasticity) 473.3404 psi 1136017 lbs Tables pg 9 pg 53 pg 9 pg 25 pg 27 pg 29 pg 19 (see below) C, ((1 +(Fc /Fc /2c)- (sgrt(((1 Fc /Fc /2c) 2)- ((FcE /Fc /c))) 0 300 08 19 chose the higher between (l /d,) and (l (used to calculate F 072. (must be <or =to 1 0) from Figure 3G pg 18 2001 nds stress rati 0.146 2001 sup 2001 nds 2001 sup Table 4F 2001 nds 2001 nds 2001 nds 2001 nds 2001 nds 0 8232 calculated F E' l /d2 FcE1 FcE2 57.5 11.00000 1.9 6 '91:4 9167 [V 1.27 PM 9/1/2006 Timber Iron Erectors 36x14 Shop 9 5' Sidewall Columns DL +SL Compression width (b)or (d depth (d) or (d,) length (l,) length 02) Area Force E_ Ke Effective length (I Effective length (l Actual Compression fc Force /Area 4 inches 6 inches 114 inches 24 inches 24 inches 2100 0 lb 1100000 psi 1 Theoretical Compression Capacity F'= F C CDCMCtCFC;CP F CD CM CI CF C CT= C enter values K C l 500 1 15 1 1 1 1 1 0 8232 -ding and Axial Compression (fJF,' +f e/(Fe 114 inches 24 inches duration moisture temperature size incision 87 500 psi (weak axis depth) (strong axis depth) (strong axis unsupported length) (weak axis unsupported length) (modulus of elasticity) 473.3404 psi 11360 17 lbs Tables pg 9 pg 53 pg 9 pg 25 pg 27 pg 29 pg 19 (see below) C ((1+( FC Fc*))f 2c)-( sgrt((( 1+( FcE /Fc /2c) 2) ((FcE /Fc /c))) 0 300 08 19 chose the higher between (l /d,) and (I (used to calculate F 0 03 (must be or to 1 0) 0 8232 from Figure 3G pg 18 2001 nds stress rati. 0 185. 2001 sup 2001 nds 2001 sup Table 4F 2001 nds 2001 nds 2001 nds 2001 nds 2001 nds calculated F E' let /d� l FcEI FCE2 575 1100000 19: 914 91.67 It l f 1:27 PM 9/1/2006 Timber Iron Erectors 36x14 Shop 9.5' Endwall Columns DL +SL +WL Bending width (b)or (d depth (d) or (d length (I t or (1, length (1 or (1 Moment (M) E_ Actual Bending Stress f (6 *M) /(b *(d 2)) 914 500 psi Theoretical Bending Capacity Fi F b C CM Ct C CF Cv Cr C; Cr Cc Cr Fb CD CM Ct CF Cv Cru Ci C C CI K L= x= KbE l 4 inches 6 inches 114 inches 24 inches 1829 00 fib 1100000 psi 675 16 1 1 0 984 1 1 1 1 1 1 1 0 300 203 820 duration moisture temperature stability size volume flat use incision repetitive member curvature form ljd lit /d1 (chose higher one) 1 u2/d2 C K *(((21/L)' (1/x)) *(((12/d) (1/x)) *(((5 125/b) ^(1/x)) (weak axis depth) (strong axis depth) (strong axis unsupported length) (weak axis unsupported length) (modulus of elasticity) 1062.653 psi Tables pg 9 pg 53 pg 9 pg 15 (see below) pg 50 pg 34 (see below) pg 53 pg 27 pg 27 pg 34 pg 15 C ((1 +(F /F *))/1 9 (sgrt((( +(FbE 1 9 ^2 ((FbE /Fb 0 9 5))) 1 9.5. 10 (20 for SYP 10 for everything else) 1 189 0 984 from Figure 3G pg 18 2001 nds pg 16 2001 nds Stress Ratio 0.8606 2001 sup 2001 nds 2001 sup Table 4F 2001 nds 2001 nds 2001 sup Table 4E 2001 nds 2001 sup Table 4F 2001 nds 2001 nds 2001 nds 2001 nds C and C cannot be used at the same time. Use the smaller of the two and the larger is to 1 Fl„*_ E' l„to find l 19. R FbE 1080 0 1 :1 :00000 0 114 76 4 4317 5 (if greater than 1 0 use 1 0) (for Glue Lam. Only) 1:27 PM 9/1/2006 Deflection Allowable (L/360)= 0 3167 Allowable (L/240)= 04750 Allowable (L/180)= 0 6333 Capacity (5wL ^4)/(384EI) Capacity (PL^3) /(48El) w ratio U360 stress ratio 0 98 U240 stress ratio 0 65 L/180 stress ratio 0 49 U120 stress ratio 0 33 L/90 stress ratio 0.24 L/600 stress ratio 1 6319354 L/480 stress ratio 1 3055483 Deflection L/ 368 w= P= I= must be less than allowable total load 134 00 0 72 0 3101 uniform load 0 point load midspan P ratio 0 0 0 0 0 plf lbs inA4 (live load floor) (total load floor live load roof) (total load roof) (total load roof) (total load roof) live load 134 00 0 72. live load only 031 0 w ratio 098 0.65 049 0 33 :0.24 1 63193537 1.3055483 P ratio 0 0. 0 0 0 I�' 1:27 PM 9/1/2006 Timber Iron Erectors 136x14 Shop 9.5' Endwall Columns DL +SL +WL Compression width (b)or (d depth (d) or (d length (1 114 inches length (1 24 inches Area 24 inches Force 1800 0 lb E 1100000 psi Ke 1 Effective length (I, Effective length (l Actual Compression fc Force /Area F CD C Ct CF Ci CT= Cp enter values KcE c l 500 1 15 1 1 1 1 1 08232 Kling and Axial Compression (f /Fc +fb/(Fb'(1-(fc/FcE))) 4 inches 6 inches 114 inches 24. inches Theoretical Compression Capacity F' F c CDCMC1CFC1Cp duration moisture temperature size incision 75 000 psi (weak axis depth) (strong axis depth) (strong axis unsupported length) (weak axis unsupported length) (modulus of elasticity) 473.3404 psi 1:136017 lbs Tables pg 9 pg 53 pg 9 pg 25 pg 27 pg 29 pg 19 (see below) C ((1+(Fc /Fc /2c) sqrt((( 1+( FcE /Fc /2c) 2) ((FcE /Fc /c))) 0 300 08 19 chose the higher between (l /d and /d2) (used to calculate F 0 96 (must be or to 1 0) stress rati 0'8232. from Figure 3G pg 18 2001 nds 2001 sup 2001 nds 2001 sup Table 4F 2001 nds 2001 nds 2001 nds 2001 nds 2001 nds 0158: calculated F E' lei /di l /d FcEI FcE2 575 1100000 19. 6 914 9167 1.28 PM 9/1/2006 GIRT Girls Purlins WALL GIRT DESIGN. GIRT SPACING 32 (in) POST SPACING 10 (ft) DESIGN LOAD 22.6 (psf) CH= 1.5 BENDING LOAD DURATION Cd SIZE FACTOR Cf FLAT USE FACTOR Cfu REPETITIVE USE Cr F'b Fb(Cd *CL *Cfu *Cr) SHEAR V =wL /2= fv= 3 *V /2 *A= Fv' Fv *Cd *CH w 60.27 (plf) Mmax 9040 (in -lbs) fb 1195 (psi) DEFLECTION delta allowable L /120= delta maximum 301 (Ibs) 37 (psi) 360 (psi) THEREFORE USE. LUMBER TYPE. hf#2 Fb 850 (psi) Fv 150 (psi) E 1.3 (psi/le6) actual bending stress 16 1.3 MSR SYP 1 0 1 00 OTHER SAWN 1.3 1 00 1768 (psi) allowable bending stress actual shear allowable shear 1 00 (in) 0.50 (in) (1 -span) CONNECTION IF GIRTS ARE FLAT ON POSTS USE. LUMBER DIMENSION 2X6e 8.25 7.563 20 8 AREA Sxx Ixx (F flat use E 16d Hardened Steel Ringshank Nails 4 per Post Girt Connection (note: alternate girt slices at posts) IF GIRTS ARE ON EDGE BETWEEN POSTS USE pre manufactured joist hangers or blocking between girts hJ#2 2X6e 32 O/C m ^2 in^3 inA4 on edge use) BENDING RATIO 0.68 SHEAR RATIO 010 DEFL. RATIO 0.50 r� 1.29 PM 9/1/2006 PURLIN Girts Purlins ROOF PURLIN DESIGN. PURLIN SPACING 24 (in) PURLIN SPAN 10 (ft) PITCH I RAD ROOF DEAD LOAD 5 (psf) 4 I 0.322 ROOF SNOW LOAD 25 (psf) ROOF WIND LOAD 34 7 (psf) area without discontinuity SHEAR Fb Fv E= LUMBER TYPE. hf#2 850 150 1.3 SNOW LOAD wt snow dead/cos 5 05 Mxx wt cos L ^2 8 9081 (m -lbs) fbxx Mxx Sxx 1201 (psi) Cd 1 15 Cr 1 15 Cf 1.30 Cfu 1 00 Fbxx' 1461 (psi) SNOW BENDING RATIO fbxx Fbxx' 0.82 Cd design load w purlin end reaction DEFLECTION design load (pli) (psi) (psi) (psi/le6) THEREFORE USE. hf#2 (pli) 1 15 5 05 (pli) 303 (Ibs) 2x6e CH= F'v fv CONNECTION IF PURLINS ARE ON EDGE BETWEEN TRUSSES USE IF PURLINS ARE ON EDGE ON TOP OF TRUSSES USE IF PURLINS ARE FLAT ON TOP OF TRUSSES USE PURLIN DIMENSION* 2x6e (F flat use E on edge use) DIM. I AREA I Sxx I Ixx 2x6e I 8.25 I 7.563 I 20 8 WIND LOAD wxx wind dead/cos 4.99 Mxx wxx L ^2 8 8987 (in -lbs) fbxx Mxx Sxx 1188 Cd 1 60 Cr 1 15 Cf 1.30 Cfu 1 00 Fbxx' 2033 (psi) WIND BENDING RATIO fbxx Fbxx' 0.58 1.333 229.9 (psi) 55 0 (psi) delta allowable L/180 5 05 delta max. 5wL ^4/384EI delta max. wL^4 /185EI DEG I COS I SIN 18 4 I 0.949 I 0.316 (pli) (psi) RATIO 0.24 0 67 (in) RATIO 0.50 (in) (1 -span) 0 76 0.21 (in) (2 -span) 0.31 pre manufactured joist hangers (1) -60d ringshank nail per truss, overlap purlins lft. Min each side of truss and nail purlin splices with (3) -16d nails (2) -16d rmgshank nail per truss, use blocking on side of truss for nailing surface 24 O/C ��l