Loading...
HomeMy WebLinkAbout2415 W 10th St Technical - BuildingTECIIMCAT 5 4\ e Ce Date 01/23/07 LATERAL ENGINEERING FOR HILINE HOMES By I E ReeD. P E PROJECT INFORMATION AND CRITERIA OWNER/ADDRESS TAX PARCEL NUMBER/SITE ADDRESS Reep Engineering Consulting Inc I E (Gene) Reep P E 8205 Sunset Lane, Pasco WA 99301 Phone (509) 547- 9087/Cell 366 -2869 E Mail reepengineeringicharter.net Washington License No 14364 Idaho License No 8908 ICC No 465600 TYPE OF DESIGN EXTENT OF DESIGN REFERENCE CODES STANDARDS Reep Engineering Consulting, Inc. PLAN 1883 [30 -PSF SNOW, 120 -MPH, EXP C, SDC D2] 1 PROJECT INFORMATION Brian Mindy Crawford 1206 Georgians Street Port Anaeles. Washington 98362 See permit application PLAN NUMBER HiLine Homes PIanz,1883 2 STRUCTURAL DESIGNER INFORMATION Page 1 of 5 Note The above stamp applies to the structural members and assemblies described in the following calculations only and is valid with a copied or wet stamp intended for reuse by HiLine Homes. Inc. 3 SCOPE OF DESIGN Lateral engineering analysis of wind and seismic forces on building Structural specifications for residence and two -car garage 2003 International Building Code (IBC) 2003 International Residential Code (IRC) 2001 National Design Specification (NDS) American Society of Civil Engineers (ASCE) Standard 7 -02 American Society for Testing Material (ASTM) Standard A307 American Plywood Association (APA) Diaphragms And Shear Walls Design/ Construction Guide November 2004 Date 01/23/07 By I E Reep, P E FLAT ROOF SNOW LOAD (LIVE LOAM. ROOF DEAD LOAD. EXTERIOR WALL DEAD LOAD. INTERIOR WALL DEAD LOAD. SEISMIC DESIGN CATEGORY. BASIC WIND SPEED. WIND EXPOSURE FACTOR. ALLOWABLE SOIL PRESSURE. MATERIAL SPECIFICATIONS Project Information And Criteria Description Specifications And Design Criteria Engineering Calculations Reep Engineering Consulting, Inc. LATERAL ENGINEERING FOR HILINE HOMES PLAN 1883 [30 -PSF SNOW 120 -MPH, EXP C, SDC D2] 4 DESIGN CRITERIA I: Rnnf 30 -osf maximum. DRnnf 15 -osf. Dwau 15 -qsf. Dwau 10 -qsf. SDC 2. 120 -moh 1.500 -osf Framing Material No 2 Hem -Fir minimum Wood Structural Panels APA Rated 10d Nails Diameter 0 148 -in 8d Nails Diameter 0 131 -in Concrete Strength 28 -days 2 500 -psi Anchor Bolts ASTM A307 Steel CONTENTS TABLES IN ATTACHMENT Table A. Plan 1883 Structural Specifications Allowable Loads Table B Wind Design Criteria Table C Seismic Design Criteria Table D Wind Loads Table E Minimum Wind Loads Table F Seismic Loads Table G Controlling Shear Loads Table H Wind Shear Wall Loads Table I Seismic Shear Wall Loads Table J Roof Diaphragm Load Calculations Page 2 of 5 Page 1 Page 3 Page 3 Page 3 Page A -1 Page A -2 Page A -3 Page A -4 Page A -5 Page A -6 Page A -8 Page A -9 Page A -10 Page A -11 Reep Engineering Consulting, Inc. Date 01/23/07 LATERAL ENGINEERING FOR HILINE HOMES By I E Reep, P E PLAN 1883 [30 -PSF SNOW, 120 -MPH, EXP C, SDC D21 Page 3 of 5 DESCRIPTION This report provides engineering calculations and structural design specifications for HiLine Homes Plan 1883 The one -story house is 1,883-sf in area plus a two -car garage Design specifications are provided in Table A and wind and seismic design criteria, including calculations, are included in Tables B and C, respectively Lateral engineering calculations are provided in Tables D through J Calculations are performed using Microsoft Excel linked worksheets SPECIFICATIONS AND DESIGN CRITERIA Design criteria are based on the 2003 International Building Code (IBC) 2001 National Design Specification and the American Society of Civil Engineers (ASCE) Standard 7 -02 Table A. Specifications of Structural Components And Fasteners Specifications are provided for size and spacing of anchor bolts shear wall hold -downs shear wall sheathing and nailing shear transfer and roof framing Structural specifications are identified with respect to Wall Lines, which are shown on plan sheet S2 Table B Wind Design Criteria Wind design criteria are based on a 1 -mph basic wind speed and Exposure Factor C The simplified method per IBC Section 1609 6 is used for determining wind loads Overturning moments due to wind forces are less than allowable restorative dead load moments as shown in Table F Uplift loads for roof tributaries are calculated assuming the maximum uplift of 24 1 -psf in the roof overhang Zone E applies to the tributary area Table C Seismic Design Criteria Seismic design loads are based on default Site Classification D per IBC Section 1615 1 1 for a maximum flat roof snow load (Pf) of 30 -psf The Equivalent Lateral Force Procedure of the American Society of Civil Engineers (ASCE) Standard 7 -02 Section 9 5 5 is used for calculating seismic forces ENGINEERING CALCULATIONS Engineering calculations are documented in Tables D through J based on specifications in Tables B and C These tables provide the following information Table D Wind Loads Wind loads and overturning moments are calculated in Table D for two orthogonal directions transverse and longitudinal Calculated values are linked to Table G, Controlling Shear Loads to determine if wind, minimum wind or seismic loads control design of lateral restraint. Unit uplift on the building is also calculated for both the transverse and longitudinal directions Overturning loads due to design base winds are calculated with a link to Table F Seismic Loads where they are compared to seismic and building restoring loads Date 01/23/07 BY I E Reep, P E Reep Engineering Consulting, Inc. LATERAL ENGINEERING FOR HILINE HOMES PLAN 1883 [30 -PSF SNOW, 120 -MPH, EXP C, SDC D2] Page 4 of 5 Table E Minimum Wind Minimum wind loads are provided in Table E based on horizontal pressures equal to 10 psf and vertical pressures equal to zero per IBC Section 1609.2 1 1 Calculations are based on the simplified wind Toad method of IBC Section 1609 6 Calculations are performed for both transverse and longitudinal directions and linked to Table G for comparison to wind and seismic Toads Tables F Seismic Loads Table F provides seismic shear Toads for a maximum flat roof snow load 30 -psf Flat roof snow loads are calculated in Table J to determine the added effect of flat roof snow loads greater than 30 -psf per IBC Section 1716 5 1 Calculations are based on seismic design criteria in Table C and the Lateral Force Procedure method of ASCE Standard 7 -02 Section 9 5 5 This procedure is limited to buildings of light frame construction not exceeding three stories in height for SDC D and higher Seismic Toads are calculated for transverse and longitudinal directions Overturning moments are calculated in the table and compared to allowable restoring dead load moments Although not required for one story buildings, story drift and P -Delta effects are analyzed in this table per ASCE 7 -02 Section 9 5 5 7 to verify building stability due to earthquake forces Both story drift and building stability are well below allowable limits Overturning loads due to design base seismic forces are calculated and compared to restoring loads The building is stable with respect to overturning Table G Controlling Shear Loads Table G provides a summary of seismic shear Toads Shear load values from Tables D E and F are compared to determine controlling lateral forces The controlling values are linked to Tables H and I for calculating maximum shear wall loads for wind and seismic forces, respectively Table H Wind Shear Loads Table H provides transverse and longitudinal Toads on the building structure including wall length, applied unit shear, shear wall length, resistive unit shear unit drag load unit dead load on shear walls, and hold -down loads for the various shear wall lengths based on controlling wind shear loads from Table I Allowable dead loads are based on an allowance of 0 66 of the calculated dead load per IBC Section 1609 3 for load combinations using the allowable stress design method of analysis of wind loads Table I Seismic Shear Loads Table I provides transverse and longitudinal loads on the building structure including wall length, applied unit shear, shear wall length, resistive unit shear, unit drag load, unit dead load on shear walls, and hold -down loads for the various shear wall lengths based on seismic shear loads from Table G Allowable dead loads are based on an allowance of 0 60 of the calculated dead load per ASCE Standard 7 -02, Section 2 4 1 for load combinations using the allowable stress design method of analysis of seismic loads Date 01/23/07 By I E Reep, P E Reep Engineering Consulting Inc. LATERAL ENGINEERING FOR HILINE HOMES PLAN 1883 [30 -PSF SNOW, 120 -MPH, EXP C, SDC D2] Page 5 of 5 Table J Roof Diaphragm Snow Load Calculations Table J provides roof diaphragm load calculations for determining diaphragm shear per IBC 1620 4 3 for seismic loads and comparing these loads with wind and minimum wind loads from Table H In addition, shear wall and diaphragm deflection are calculated to confirm that the diaphragm is flexible that is the roof diaphragm to shear wall ratio is greater than 2 0 per ASCE 7 -02, Section 9 5.2 3 1 Strength level seismic unit shear values are used to calculate deflections Calculations are based on American Plywood Association (APA) Report T2002 -17, Estimating Wood Structural Panel Diaphragm and Shear Wall Deflection April 17, 2002 Uplift due to design base wind loads are calculated assuming the roof experiences a maximum uplift pressure from Table B for `Roof Wind Zone F Pressure" Allowable roof dead loads plus truss connections exceed uplift by an acceptable margin Reep Engineering Consulting, Inc Page A -1 Table A. Plan 1883 Structural Specifications Allowable Loads (6 sheets) Summary structural specifications are provided below Details for standard specifications and calculation of allowable loads are provided in at the end of this table Explanation of Wall Lines Shear walls and structural specifications are identified with Wall Lines Lettered Wall Lines are generally identified from front to rear of the building and numbered Wall Lines start at the left and continue to the right (standard plan) For reversed plans, Wall Lines remain the same except numbered Wall Lines start at plan right. SUMMARY STRUCTURAL SPECIFICATIONS Foundation Anchoring Specifications (All Wall Lines) Maximum applied shear per Tables H or 1 (Ib) I 2,855 Maximum anchor bolt Load 72 -in o c minimum 2 anchors per mudsill (Ib) 1 714 Allowable anchor bolt load for 1 /2 -in dia A307 bolts with 7 -in embedment (Ib) 1 912 Install 1 /2 -in dia ASTM A307 anchor bolts 72 -in o c per standard specification Shear Wall Hold -Down Specifications Wall Line A (Garage Portals) Maximum overturning tension load per Tables H or 1 (Ib) 1 1 417 Where shown on the plan install Simpson STHD8 Strap Tie Holdowns per standard specification Allowable tension load for Simpson STHD8 Strap Ties is 2,385 -Ib 1 2,385 Wall Line D (Interior OSB Shear Wall) Maximum overturning tension load per Tables H or I (Ib) 1 696 Fasten each end of OSB shear wall bottom plate to top plate of pony wall below with 1 /2 -in dia ASTM A307 bolts or threaded rod with minimum 2X2X3/16 -in flat washers under bolt head /nuts Fasten OSB to crawl pony wall per standard shear wall sheathing specification Allowable overturning load for minimum 8 -ft long crawl level pony wall sheathed with 1 054 OSB and fastened with 8d nails 6 -in o c 1,054 -Ib Shear Wall Sheathing Specifications All Exterior Wall Lines Maximum resistive unit shear load per Tables H or I (Ib /ft) 1 289 Apply 7/16 -in OSB wood structural panels to Hem -Fir framing members with 8d nails 6 -in o c per standard specification Allowable shear per standard specification (0 50)(0 93)(785) 365 -Ib /ft. J 365 Wall Line C (Garage GWB Shear Wall) Maximum resistive unit shear for seismic loads per Table 1 (Ib /ft) 1 122 Fasten Simpson WB106 Wall Bracing and 1 /2 -in GWB drywall panels to both sides of Hem -Fir framing members per standard specification Allowable shear for seismic loads per standard specification 172 -lb /ft. 1 172 Revised 01/03/07 Lateral Specs Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 1 Reep Engineering Consulting, Inc Page A -1 Table A. Plan 1883 Structural Specifications Allowable Loads (6 sheets) Wall Line D (Interior OSB Shear Wall) Maximum resistive unit shear for seismic loads per Table 1 (Ib /ft) Apply 7/16 -in OSB wood structural panels to Hem -Fir framing members with 8d nails 6 -in o c per standard specification Sheath pony wall below shear wall with 7/16 -in OSB nails 6 -in o c on edges and 12 -in o c. in the field Allowable shear per standard specification for wind loads (0 50)(0 93)(785) 365 -lb /ft. j Shear Transfer Specifications All Wall Lines Fasten double top plates together with 2 -10d nails 16 -in o c and 6 -in o c at splices Overlap splices 4 -ft. minimum Fasten OSB wall sheathing between shear wall segments at same fastener spacing as on shear walls Wall Lines A, B E (Gables) Maximum applied unit shear per Tables H or 1 (Ib) Fasten gable -end trusses to double top plates with 2 -10d toenails 16 -in o c Allowable load for (0 83)(2)(12/16)(1 6)(84) 203 -lb /ft. Wall Lines 1 2 (Eaves) Maximum applied unit shear per Tables H or 1 (Ib) See Roof Framing Specification for truss connections Fasten per Roof Framing Specification for truss connections Wall Line C (Roof Truss -to -Shear Wall) Maximum applied unit shear per Tables H or 1 (Ib /ft) Install 2X blocking laid flat on top of wall against truss bottom chord Fasten blocking to top plate and truss bottom chord with 2 -10d common nails 16 -in o c When truss bottom chord rests on wall top plate fasten truss to wall plates with 2 -10d toenails 16 -in o c Allowable load for 2 -10d toenails 16 -in o c (2)(12/16)(1 6)(102) 245 -lb /ft Wall Line D (Roof Truss -to -Shear Wall) Maximum applied shear per Tables H or I (lb /ft) Install 2X6 ladder blocking at 5 places on shear wall per standard specification Allowable Toad for 5 ladder blocks (5)(606) 3,035 -Ib Roof Diaphragm Framing Specifications Roof Sheathing Maximum applied unit shear per Table J (lb /ft) Install 7/16 -in unblocked wood structural panels per IBC Case 1 o c on supported edges and 12 -in o c in the field Basic allowable unit shear for wind loads 645 -lb /ft per NDS Table 4 2B for 7/16 -in unblocked panel diaphragms Adjustment Factor (AF) for ASD 0 5 Adjusted allowable unit shear (0 50)(645) 323 -Ib /ft. Truss Blocking Boundary Nailing Fasten 2X4 vent blocking in each truss bay with 1 -10d toenail into truss each side Fasten roof diaphragm to blocking with 8d nails 6 -in o c Fasten OSB to framing members with 8d Fasten with 8 -d nails 6 -in Revised 01/03/07 Lateral Specs Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 2 169 365 79 203 67 381 159 245 2 855 3,035 127 323 Reep Engineering Consulting, Inc Page A -1 Table A. Plan 1883 Structural Specifications Allowable Loads (6 sheets) Truss Connections Maximum applied unit shear per Tables G Q/ (lb/ft) 1 139 Fasten truss tails to top plates with 2 -10 toenails and a Simpson H2 5A or H1 Seismic Hurricane Tie fastened to truss and top plates per manufactures instructions (see sheet S3 Roof Framing Plan) Allowable load for 2 -10d common toenails (2)(0 83)(1 6)(102) 271-lb per truss end Allowable load for H2 5A or H1 Seismic HurricaneTies 110-lb per truss end for Hem- 381 Fir Total allowable load per truss end 271 110 381-lb per truss end 381-lb/ft (H2 5A ties control) Truss Chord Splice Nailing Maximum applied chord tension load per Tables J, C T M/b v,L /b8 (lb) 1 1,631 Fasten exterior wall top plate splices together with 10d nails 4 -in o c Minimum splice length 48 -in Allowable chord splice tension load for 10d nails 4 -in o c 1 2 122 Standard Structural Specifications Allowable Loads Foundation .Anchor Bolts Basic allowable single shear for fastening Hem -Fir framing to concrete with 1/2-in bolts 570-lb per NDS Table 11E Adjustment for 10- minute wind /seismic loads 1 6 NDS 912 Table 2 3.2 Allowable load (1 6)(570) 912-lb Basic allowable single shear for fastening Hem -Fir framing to concrete with 1/2-inX8 5- in long Simpson Wedge -All wedge anchors in 2,500 -psi concrete with 4 5 -in 938 embedment 1 763-lb Adjustments for no special inspection 0 50 for 3 -in edge distance 0 80, and for wind /seismic loads 1 33 Allowable load Basic allowable single shear for fastening Hem -Fir framing to concrete with 1 /2 -in Simpson Titen HD anchors in 2,500 -psi concrete with 4.25 -in embedment 2,210 -lb 1 176 Adjustments for 3 -in edge distance 0 44 and for 10- minute wind /seismic loads 1 33 Allowable load (0 40)(1 33)(2,210) 1,176 -lb i g oldDotins.. o Simpson STHD8 /10 Strap Ties Install Simpson STHD8 Strap Tie Holdowns in 2,500 -psi concrete and 6 -in minimum stem wall Allowable tension load for Simpson STHD8 Strap Ties is 2,385 -lb for 2 500 -psi 2 385 concrete Install Simpson STHD10 Strap Tie Holdowns in 2,500 -psi concrete and 6 -in minimum stem wall Allowable tension load for Simpson STHD10 Strap Ties is 3 730-lb for 2 500 -psi 3 730 concrete Revised 01/03/07 Lateral Specs Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 3 Reep Engineering Consulting, Inc Page A -1 Table A. Plan 1883 Structural Specifications Allowable Loads (6 sheets) Simpson LTT20B /HTT16 Strap Ties Install Simpson LTT2OB Tension Ties fastened to 3 -in framing with 10 -16d nails Fasten Allowable tension load for Simpson LTT2OB Tension Ties is 1 750-lb (controls) for 2 500 1 750 psi concrete 1,750 -lb Basic allowable tension load for 1 /2- inX8 -in long Simpson Titen HD anchors embeded 4 125 -in into 2,500 -psi concrete 2,207 -lb Adjustments are 0 50 for no special 1,218 inspection 0 83 for 3 -in edge distance, and 1 33 wind /seismic Toads Allowable load (0 50)(0 83)(1 33)(2,207) 1,218 -lb (controls) Basic allowable tension load for 1 /2 -inX8 5in long Simpson Wedge -All anchors embeded 4 5 -in into 2 500 -psi concrete 2 045-lb Adjustments are 0 50 for no special 1 088 inspection, 0 80 for 3 -in edge distance, and 1 33 for wind /seismic loads Allowable load (0 50)(0 80)(1 33)(2,045) 1,088 -lb (controls) Shear Wall Nailing Into Mudsill Fasten OSB panels to mudsill with 8d nails a 6 -in o c Basic allowable single shear load for 8d nails and Hem -Fir framing 73-lb per NDS Table 11N Adjustment for 10- minute wind /seismic Toads 1 6 per NDS Table 2 3.2 Allowable shear load (1 6)(73) 117 -Ib /nail Allowable shear wall overturning load for 527 4 -ft panels fastened with two rows of 8d nails 6 -in o c 1/2(48/6 1)(117) 527-lb (controls) Fasten OSB panels to both mudsill and wall bottom plate with 8d nails 6 -in o c. Fasten bottom plate at each end of shear wall to foundation with 1 /2 -in dia.X 8 5 -in long Simpson Wedge Anchors (or equal) with 3X3X3/16 -in flat washers at locations shown on Sheets S1 /S2 Embed anchor 4 125 -in into minimum 2 500 -psi concrete as specified above Allowable shear wall overturning load for 4 -ft panels fastened with two rows of 8d nails 1 054 6 -in o c 1/2 (2)(48/6 1)(117) 1,054 -lb (controls) Nails (Per NDS Tables 11N and 2.3.2 Single shear for 8d common (0 131 -in) with 1 5 -in thickness Hem -Fir side members Basic allowable shear for 8d common nails 84-lb Adjustment for 10- minute 134 wind /seismic loads 1 6 Allowable shear load (1 6)(84) 134-lb Single shear fors Od common (0 148 -in) with 1 5 -in thickness Hem -Fir side members Basic allowable shear for 10d common nails 102-lb Adjustment for 10- minute 163 wind /seismic Toads 1 6 Allowable shear Toad (1 6)(102) 163-lb Single shear forl0d common (0 148 -in) with 1 5 -in thickness Hem -Fir side members Basic allowable shear for 10d common nails 102-lb Adjustment for 10- minute 163 wind /seismic Toads 1 6 Allowable shear Toad (1 6)(102) 163-lb Single shear for 10d common toenails (0 148 -in) with 1 5 -in thickness Hem -Fir side 135 members (0 83)(163) 135-lb Revised 01/03/07 Lateral Specs Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 4 Reep Engineering Consulting, Inc. Page A -1 Table A. Plan 1883 Structural Specifications Allowable Loads (6 sheets) Shear UVa f Sheathing' OSB Shear Wall Panels Per NDS Table 4.3A) Basic allowable shear for wind loads 785-lb/ft per NDS Table 4 3A for 8d nails 6- in o c on edges, 12 -in o c in the field framing 16 -in o c per Note b Adjustments 0 50 for ASD and 0 93 for Hem -Fir framing Allowable shear (0 50)(0 93)(785) 365- lb/ft. Basic allowable shear for wind loads 1,205-lb/ft per NDS Table 4 3A for 8d nails staggered 4 -in o.c. on edges 12 -in o c in the field framing 16 -in o c per Note 560 b Framing on panel edges is 3 -in nominal Adjustments are 0 50 for ASD and 0 93 for Hem -Fir framing Allowable shear (0 50)(0 93)(1,205) 560-lb/ft. Basic allowable shear for seismic loads 560-lb/ft per NDS Table 4 3A for framing 16 -in o c per Note b Adjustments are 0 50 for ASD and 0 93 for Hem -Fir framing 260 Allowable shear (0 50)(0 93)(560) 260-lb/ft. Basic allowable shear for seismic loads 860-lb/ft per NDS Table 4 3A for 8d nails staggered 4 -in o c on edges 12 -in o c in the field, framing 16 -in o c per Note 400 b Framing on panel edges is 3 -in nominal Adjustments are 0 50 for ASD 0 93 for Hem -Fir framing Allowable shear (0 50)(0 93)(860) 400-lb/ft. GWB Shear Wall Panels Per NDS Table 4.3B) Fasten Simpson WB106 Wall Bracing metal straps with 2 -16d nail to top and bottom wall plates and 1 -8d nail to each stud per manufacturers instructions Straps may be placed on wall in an X or V fashion Fasten 1 /2 -in GWB panels to both sides of wall with No 6 X 1.25 -in long Type S or W drywall screws 4 -in o.c. on edges and in the field with all edges blocked Minimum framing material is Hem -Fir with maximum spacing of studs 16 -in o c Basic allowable unit shear for wind loads 300-lb/ft. Adjustment Factor (AF) for ASD is 0 50 and AF for Hem -Fir framing 0 93 Allowable shear (2)(0 50)(0 93)(300) 279 279-lb/ft. Basic allowable unit shear for seismic loads without flat metal strap bracing 300 Ib/ft. Adjustments are for ASD is 0 50 0 93 for Hem -Fir framing and 0 30 for seismic 86 response modification coefficient (R =2) using GWB sheathing per IBC Table 1617 7.2 (2/6 5 0 30) Allowable shear (2)(0 50)(0 93)(0 30)(300) 86-lb/ft. Basic allowable unit shear for seismic loads with flat metal strap bracing 300-lb/ft for framing 16 -in o c per Note b Adjustment factors for ASD is 0 50, Hem -Fir framing 0 93, and seismic response modification coefficient (R) GWB sheathing per 172 IBC Table 1617 7.2 4/6 5 0 62 Allowable shear (2)(0 50)(0 93)(0 62)(300) 172 Ib/ft. 365 Revised 01/03/07 Lateral Specs Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 5 Reep Engineering Consulting, Inc Page A -1 Table A. Plan 1883 Structural Specifications Allowable Loads (6 sheets) .Shear Transfer Nails Basic allowable Toad for 10d common nails fastened with 1 5 -in side members 102-lb per NDS Table 11N Adjustment for 10- minute wind /seismic loads 1 6 Allowable 163 load (1 6)(102) 163-lb Basic allowable load for 8d common nails fastened to minimum 3 /4 -in side members 73-lb per NDS Table 11N Adjustment for 10- minute wind /seismic loads 1 6 Allowable load (1 6)(73) 117-lb Toenails Allowable load for 10d common toenails ca 12 -in o c (0 83)(1 6)(102) 135-1b/ft. 1 135 Allowable load for 2 -10d common toenails 16 -in o c (0 83)(2)(12/16)(1 6)(102) 203 203-lb/ft. 117 Ladder Blocking Place 2X framing members laid flat on wall perpendicular to truss bottom chords at approximately equal spacing Fasten blocking to top plate with 4 -10d nails Fasten each end of blocking to truss bottom chord with 2 -10d nails Allowable shear load per ladder block (4)(0 93)(1 6)(102) 607-lb 1 607 Revised 01/03/07 Lateral Specs Plan 1883 -07 Lateral -30 Snow 120 mph, Exp C, SDC D2.xls 3/7/2007 6 Reep Engineering Consulting, Inc Table B Wind Design Criteria Description I Value 1 Description Basic Wind Speed Va (mph) Simplified Method per IBC Section 1609 6 Importance Factor l Roof Slope (6/12) Mean Roof Height (ft) Exposure Height Factor (Exposure C) Horizontal Pressures (psf) Wall Zone A Pressure Wall Zone C Pressure Roof Zone B Pressure Roof Zone D Pressure 120 Vertical Pressures (psf) Yes1Roof Zone E Pressure 1 00 Roof Zone F Pressure 0 50 Roof Zone G Pressure 12 8 Roof Zone H Pressure 1.21 Roof Overhang Zone E Pressure Roof Overhang Zone G Pressure 34 7IRoof Overhang Zone F Pressure 25 OIRoof Overhang Zone H Pressure 5 51 581 Page A -2 I Value 15 4 20 9 11 1 16 9 28 7 24 3 20 9 16 9 Note. Plus and minus signs signify wind pressures acting toward and away from the surfaces, respectively per ASCE Standard 7 -02 Building Measurement Values For Use in Tables E And F Left Wall Length (ft) 1 40 O1Front Wall Length (ft) 1 64 0 Center Wall Length (ft) 1 0 OlCenter Wall Length (ft) 1 0 0 Right Wall Length (ft) 1 40 OIRear Wall Length (ft) 1 64 0 Building Wall Height (ft) 1 7 8lRoof Height (ft) 1 10 0 Transverse Building Zone Measurements I Longitudinal Building Zone Measurements Horizontal Windforce Loading 1 Horizontal Windforce Loading Transverse Wall Zone A B Width (ft) 1 8 OlLongitudinal Wall Zone A Width (ft) 8 0 Transverse Wall Zone C D Width (ft) 1 56 OlLongitudinal Wall Zone C Width (ft) 32 0 Transverse Wall Zones A C Height (ft) 1 7 8lLongitudinal Wall Zone A Height (ft) 9 8 Transverse Roof Zones B D Height (ft) 1 7 8lLongitudinal Wall Zone C Height (ft) 14 8 Vertical Windforce Loading 1 Vertical Windforce Loading Transverse Roof Zones E F Width (ft) I 8 OlLongitudinal Roof Zones E F Width (ft) 1 8 0 Transverse Roof Zones G H Width (ft) 56 O1Longitudinal Roof Zones G H Width (ft) 1 32 0 Transverse Roof Zones E F Length (ft) 1 20 OlLongitudinal Roof Zones E G Length (ft)1 0 0 Transverse Roof Zones G H Width (ft) 1 20 OiLongitudinal Roof Zones F H Length (ft)1 0 0 Note Width is measured perpendicular the wind direction and length parallel to the wind direction Revised 11/09/06 Wind Criteria Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 Table C Description Building Occupancy Category Seismic Use Group Seismic Importance Factor I Default Seismic Site Classification Seismic Design Category Response Modification Coefficient, R Mean Building Height, h (ft) Building Period Coefficient: C (sec) Building Period, T C,h /4 (sec) Site Short Period Acceleration, SDS (g) MCE Long Period Acceleration, S (g) Site Coefficient, F„ Site Long Period Acceleration, S (g) T 0.2S /S (sec) I /sec) is rerioa i o 1 <1= i s' is uesign apectrai response, J JDS Equivalent Lateral Force Procedure Seismic Design Coefficient: C S /R Maximum Unit Shear vmax (lb/ft) Story Base Shear, V ston (lb) Story Shear Ratio rmax 10v Base Story Area AB (sf) Square Root of Base Story Area AB (ft) Reduncany Factor, p 2 20 /r,„,,,(A /2 Minimum Redunancy Factor, p SL Seismic Shear E pQ 0.2S Seismic Load Combination Factor for ASD ASD Base Shear. VASD 0 7VSL Maximum Flat Roof Snow Load Pf (psf) Reep Engineering Consulting, Inc Seismic Design Criteria Reference /Calculation ASCE Standard 7 -02, Table 1 -1 ASCE Standard 7 -02, Table 9 1 3 ASCE Standard 7 -02, Table 9 1 4 IBC Section 1615 1 1 IRC Table 301.2.2 1 1 IBC Table 1617 6.2 Per Plan ASCE Standard 7 -02, Table 9 5 5 3.2 ASCE Standard 7 -02, Section 9 5 5 3 2 IRC Table R301 2.2 1 1, for SDC D2 IBC Figure 1615(2) for Western Areas IBC Table 1615 1 2(2) for S 0 50 S F„S per IBC Equation 16 -38 IBC Section 1615 1 4 IBC Section 1615 1 4 IBC Section 1615 1 4 IBC Section 1615 1 4 ASCE 7 -02 Section 9 5 5 ASCE 7 -02 Equation 9 5 5 2 1 -1 Calculation per Table 1 Calculation per Table G ASCE Standard 7 -02, Section 9 5 2 4 2 Plans Calculation ASCE Standard 7 -02, Section 9 5 2 4.2 ASCE Standard 7 -02, Section 9 5 2 4 2 ASCE Standard 7 -02, Section 2 4 1 Calculation Building Department Page A -3 Value I I 10 D D2 65 130 0 02 0 137 1 170 0 500 15 0 750 0 128 0 641 Yes Yes Yes 0 180 167 7,869 021 2,367 48 7 0 07 1 00 0 180 0 700 0 126 30 0 Revised 11/14/06 Seismic Criteria Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 Zone Transverse Wall Zone A 1 Transverse Wall Zone C 1 Transverse Roof Zone B 1 Transverse Roof Zone DI Transverse Wall Zone E 1 Transverse Wall Zone F 1 Transverse Wall Zone G 1 Transverse Wall Zone H 1 Roof Overhang Zone E 1 Roof Overhang Zone F 1 Roof Overhang Zone G 1 Roof Overhang Zone H 1 Longitudinal Wall Zone E1 Longitudinal Wall Zone F1 Longitudinal Wall Zone d Longitudinal Wall Zone H Roof Overhang Zone E 1 Roof Overhang Zone F 1 Roof Overhang Zone G 1 Roof Overhang Zone H 1 Reep Engineering_ Consulting, Inc Table D Wind Loads Wind Zone Zone Zone Pressure Width Ht. /Leng Area (psf) (ft) (ft) (sf) Horizontal (Transverse) Wind Loads 3471 801 781 621 2501 5601 781 4346 551 801 1001 800 581 5601 1001 5600 Transverse Base Shear /Moment Vertical (Transverse) Wind Loads -154 801 200 1600 20 9 8 01 20 0 160 0 -11 1 56 01 20 0 1,120 0 169 5601 200 1,1200 287 801 13 106 243 801 13 106 -209 5601 131 745 -169 5601 131 745 Total Uplift/Overturning Moment on Building Unit Uplift on Building (psf) Horizontal (Longitudinal) Wind Loads Longitudinal Wall Zone Al 34 71 8 01 9 81 78 1 Longitudinal Wall Zone d 25 01 32 01 14 81 472 3 Longitudinal Base Shear Vertical (Longitudinal) Wind Loads -1541 801 2501 2000 -20 91 8 01 25 01 200 0 -11 11 32 01 25 01 800 0 16 91 32 01 25 01 800 0 28 71 8 01 1 01 8 0 -24 31 8 01 1 01 8 0 20 91 32 01 1 01 32 0 1691 3201 101 320 Zone Force (lb) 2,153 10,882 443 3,236 10,197 -2,466 3,352 12,406 18,878 305 -259 1,560 -1,255 40,480 17 1 2,707 11,828 7,268 -3,082 -4,190 8,861 13,484 -229 -195 670 539 31,251 13.2 Moment Arm Page A -4 Moment (ft) (ft-lb) 3 9 8,352 3 9 42,223 7 8 3,438 7 8 25,113 79,126 30 0 73,971 10 0 33,518 30 0 372,165 10 0 188,779 40 7 12,398 -0 7 -172 40 7 63,450 -0 7 -837 822,399 Total Uplift/Overturning Moment on Building Unit Uplift on Building (psf)I Note Plus and minus signs signify wind pressures acting toward and away from the surfaces resnectively ner ASCF Standard 7 -02 Revised 11/09/06 Wind Loads Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 Zone Transverse Wall Zone A Transverse Wall Zone C Transverse Roof Zone. B1 Transverse Roof Zone DI Transverse Wall Zone E Transverse Wall Zone F Transverse Wall Zone G Transverse Wall Zone H Roof Overhang Zone E Roof Overhang Zone F Roof Overhang Zone G Roof Overhang Zone H Longitudinal Wall Zone El Longitudinal Wall Zone FI Longitudinal Wall Zone CI Longitudinal Wall Zone H Roof Overhang Zone E 1 Roof Overhang Zone F 1 Roof Overhang Zone G 1 Roof Overhang Zone H 1 Reep Engineering Consulting, Inc Table E Minimum Wind Loads Wind Zone Zone Zone Pressure Width Ht. /Leng Area (psf) (ft) (ft) (sf) Horizontal (Transverse) Wind Loads 10 01 10 01 1001 1001 801 5601 801 5601 7 81 62 1 781 4346 1001 800 10 01 560 0 Transverse Base Shear /Moment Vertical (Transverse) Wind Loads 001 80 200 1600 001 80 200 1600 001 560 200 1,1200 001 560 200 1,1200 001 80 1 3 106 001 80 1 3 106 001 560 13 745 001 560 13 745 Total Uplift/Overturning Moment on Building Unit Uplift on Building (psf) Horizontal (Longitudinal) Wind Loads Longitudinal Wall Zone PI 10 01 8 01 9 81 78 1 Longitudinal Wall Zone CI 10 01 32 01 14 81 472 3 Longitudinal Base Shear Vertical (Longitudinal) Wind Loads 00 80 250 2000 00 80 250 2000 00 320 250 8000 00 320 250 8000 00 80 10 80 00 80 10 80 00 320 10 320 00 320 10 320 Zone Force (lb) 621 3 9 2,409 4,346 4 0 17,382 800 10 0 8,000 5,600 10 0 56,000 8,883 83,791 0 0 0 0 0 0 0 0 0 00 781 4,723 2,752 0 0 0 0 0 0 0 0 Moment Arm (ft) Page A -5 Moment (ft-lb) 30 0 0 100 0 30 0 0 100 0 40 7 0 0 7 0 40 7 0 0 7 0 0 Total Uplift/Overturning Moment on Building 0 Unit Uplift on Building (psf)1 0 0 Note Plus and minus signs signify wind pressures acting toward and away from the surfaces resnentivelv ner ASCF Standard 7 112 Revised 11/09/06 Min Wind Loads Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 Building Component Roof Diaphragm Ceiling 1 20% of Flat Roof Snow Load Pf 30 -psil One -Half Exterior Walls 1 One -Half Partitions Roof Diaphragm Tributary Dead Load I Base Shear Roof Diaphragm Ceiling Exterior Walls Partitions Reep Engineering Consulting, Inc Table F Seismic Loads Load Height/ Length Area Weight (psf) Wft)h (ft) (sf) 15 01 001 1501 10 01 1 1 78 78 208 160 2,3671 2,3671 2,3671 1,8391 1 1 (Ib) 35,505 0 17,753 9,195 48,979 Moments on Building Due to Building Seismic Forces Force Dist. (Ib) (ft) 4,4741 7 8 01 78 1 1 2,2371 7 8 1 1 1,1591 7 8 Building Dead Load Restorative Moments Roof Diaphragm Ceiling 20% of Flat Roof Snow Load, Pf 30 -psf Exterior Walls Partitions Total Moment Due to Seimic Forces Total Moment Due to Wind Forces Total Retorative Moment 6/10 of Restorative Moment P Delta Effects Item P Total vertical design Toad at and above level 1 h Story height (in) Design story drift between level 1 and level 0 Strength Level seismic shear force VSL (Ib) Deflection amplification factor for OSB shear walls (C Check stability coefficient, 0 P 0 10 P -Delta Effects are not required to be consider if 0 <1= Allowable story drift Da 0 020h (in) 35,5051 35,5051 18,3901 1 1 1 Reference IASCE 9 5 5 7 2 IASCE 9 5 5 7 2 From Table J 'ASCE 9 5 5 7 2 'ASCE Table 9 5 2 2 'ASCE 9 5 5 7 2 IASCE 9 5 5 7.2 12003 IBC 1617 5 4 Page A -6 Shear Load (Ib) 4,474 0 2,237 1,159 7,869 Moment (ft -Ib) 34,715 0 17,358 8,991 61,064 822,399 20 0 710,100 20 0 710,100 20 0 367,800 1,788,000 1,072,800 Value 35,505 93 0 169 11 017 40 0 001 0 100 1 86 Revised 01/03/07 Seismic Loads Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 Reep Engineering Consulting, Inc Page A -7 Table G Controling Shear Loads Main Floor Level 1 Second Floor Level Transverse 1 Longitudinal 1 Transverse 1 Longitudinal Wind Load (Ib) 10,1971 7,2681 N/A 1 N/A Minimum Wind Load (Ib) 8,8831 2,7521 N/A 1 N/A Seismic Load (Ib) 7 8691 7,8691 N/A 1 N/A Note: Bolded /shaded cells indicate controling shear loads Revised 01 /03 /07Controling Loads Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 Reep Engineering Consulting, Inc Table H Wind Shear Wall Loads Transverse Loads Wall Line Identification Wall Type Fraction of Tributary Length Applied Shear (Ib) Wall Length (ft) Applied Unit Shear (Ib /ft) Shear Wall Length (ft) Resistive Unit Shear (lb /ft) Unit Restoring Load (Ib /ft) 0 66[Unit Restoring Load] (Ib /ftj Shear Wall Height (ft) 1 Max. Hold -Down 3 0 -ft SW (Ib) I Max. Hold -Down 4 0 -ft SW (Ib) Max. Hold -Down 6 0 -ft SW (Ib) Max. Hold -Down 14 0 -ft SW (lb) Max. Hold -Down 18 5 -ft SW (Ib) Note Maximum hold -down loads are identified in bolded cells A OSB 0 170 1 733 22 0 79 60 289 825 550 78 1,417 1 OSB 0 50 3,634 64 0 57 41 0 89 420 280 78 268 B OSB 0 100 1 020 22 0 46 80 127 300 200 78 589 Wall Line Identification Wall Type Fraction of Tributary Length Applied Shear (Ib) Wall Length (ft) Applied Unit Shear (Ib /ft) Shear Wall Length (ft) Resistive. Unit Shear (Ib /ft) Unit Restoring Load (Ib /ft) 0 66[Unit Restoring Load] (Ib /ftj Shear Wall Height (ft) 1 Max. Hold -Down 3 0 -ft SW (1b)1 Max. Hold -Down 5 0 -ft SW (1b)1 Max. Hold -Down 6 5 -ft SW (1b)1 Max. Hold -Down 12 5 -ft SW (IL -1,062 Max. Hold -Down 22 0 -ft SW (Ib) Note Maximum hold -down loads are identified in bolded cells C I D GWB 1 OSB 0.280 2 855 22 0 130 180 159 190 127 78 59 Shaded Longitudinal Loads 2 OSB 0 50 3 634 54 0 67 39 0 93 420 280 78 23 -187 0 280 2 855 40 0 71 140 204 190 127 78 696 E OSB 0 1701 1 7331 4001 431 24 0 72 255 170 78 51 cells require hold -downs Page A -8 Total 1 00 10,197 Total Revised 1211810Wind Shear Loads Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 1 00 7,268 Wall Line Identification Wall Type Fraction of Tributary Length Applied Shear (Ib) Wall Length (ft) Applied Unit Shear (Ib /ft) Shear Wall Length (ft) Resistive Unit Shear (Ib /ft) Unit Restoring Load (Ib /ft) 0 66[Unit Restoring Load] (Ib /ftj Shear Wall Height (ft) Max. Hold -Down 3 0 -ft SW (lb)[ Max. Hold -Down 4 0 -ft SW (1b)1 Max. Hold -Down 6 0 -ft SW (1b)1 Max. Hold -Down 14 0 -ft SW (Ib) Max. Hold -Down 18 6 -ft SW (Ib) Reep Engineering Consulting, Inc Table I Seismic Shear Wall Loads Transverse Loads A OSB 0 170 1 338 22 0 61 80 167 825 550 78 473 B OSB 0 100 787 180 44 80 98 300 200 78 363 C GWB 0 280 2,203 22 0 100 180 122 190 127 78 -222 Note Maximum hold -down Toads are identified in shaded /bolded cell Longitudinal Loads Wall Line Identification 1 2 Wall Type OSB OSB Fraction of Tributary Length 0 50 0 50 Applied Shear (Ib) 3 935 3,935 Wall Length (ft) 64 0 54 0 Applied Unit Shear (lb /ft) 61 73 Shear Wall Length (ft) 41 0 39 0 Resistive Unit Shear (lb /ft) 96 101 Unit Restoring Load (Ib /ft) 420 420 0 66[Unit Restoring Load] (Ib /ftj 280 280 Shear Wall Height (ft) 1 7 8 7 8 Max. Hold -Down 5 0 -ft SW (Ib) I 13 Max. Hold -Down 6 5 -ft SW (Ib) I -127 Max Hold -Down 12 5 -ft SW (Its -1,005 Max. Hold -Down 22 0 -ft SW (Ib) Note Maximum hold -down loads are identified in shaded /bolded cells D OSB 0.280 2,203 40 01 55 14 01 1571 140 93 78 568 E OSB 0 170 1,338 40 0 33 24 0 56 255 170 78 -77 Page A -9 Total 1 00 7,869 Total Revised 01 /0310r'smic Shear Loads Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 1 00 7,869 Reep Engineering Consulting, Inc Table J Roof Diaphragm Calculations (2 sheets) Description I Reference 'Equation/Comment Roof /Floor Diaphragms Load Calculations Diaphragm Shear/Weight IIBC Sect. 1620 4 3 F 0 2I Diaphragm Weight (Ib) 'Report Table G W wpARoof Strength Level Diaphragm Shear (Ib) 'IBC Sect. 1620 4 3 F 0.2I Q Strength Level Diaphragm Unit Shear (Ib /ft) 'Calculation y 1 /2Q /b Service Level Seismic Diaphragm Shear (Ib) IASCE Sect. 2 4 Q 0 7E 0 7Q Service Level Diaphragm Shear (Ib) 'Report Table G Q (Minimum Wind) Diaphragm Span (ft) 'Design Drawings b Service Level Diaphragm Unit Shear (Ib /ft) 'Calculation y 1 /2Q /b Shear Wall Deflection Calculations Area of Shear Wall Chords (in 'Design Drawings Achord Shear Wall Height, h (ft) Minimum Shear Wall Length, b (ft) Maximum SL Seismic Unit Shear y (Ib /ft) Shear Wall Bending Deflection, y (in) Shear Wall Shear Deflection, y (in) Shear Wall Nail Spacing, S (in) Unit Shear Per Nail vnail (Ib) Nail Load Factor o Nail Slip Factor e (in) Nail Slip Deflection, y (in) rloia -uown uetiection, y (in) 1 otai near vvaii uetiectlon ysw (In) AuowaDie Story uritt, y (in) Roof Diaphragm Deflection Calculations Modulus of Elasticity- Diaphragm Chord, E (psi NDS Area of Diaphragm Chords (in Design Drawings Moment of Intertia of Diaphragm Chords (in Calculation Diaphragm Length (in) Design Drawings Calculation IYh 5v /384EI Table A -3 17/16-in OSB APA Design Guide' IYs vL /4Gt (Specifications IS IAPA Design Guide''Vnaii v/S IAPA Design Guide Table A -2 'APA Design Guide' 'Yns 0 188I-en IAPA Report T2002 -17 April 17 2002 1Yd Yb Ys Yns Ycs IAPA Report T2002 -17, April 17 2002 Blocked Bending Deflection (in) Shear Modulus, Gt (psi) Shear Deflection (in) Diaphragm Nail Spacing, S (in) Unit Shear Per Nail, vnail (Ib) Nail Slip Factor e (in) Nail Slip Deflection, y (in) Chord Splice Deflection, Ycs (in) Total Blocked Deflection y (in) Factor for Unblocked Diaphragms 2(1 5)(5 5) I Design Drawings I Design Drawings 'Table I (Calculation 'Calculation I Specifications IAPA Design Guide' IAPA Design Guide' IAPA Design Guide' IAPA Design Guide' 'APA Report T2002 -17, Table 3 for nails 'Calculation Ysw Yb ys Yns Yr>j 'IBC Table 1617 3 1 y u uzun h= b= v= y,, 8v /EAb Ys vh /Gt S= Vnaii v/S Vf vnail/ e (V 11 /616) 3.018 Yns 0 75he No 2 Hem -Fir Achord 2(1 5)(5 5) I 2A /2) L= Unblocked Diaphragm Deflection (in) IAPA Design Guide' 'Calculation Check Diaph. /Shear Wall Deflection Ratio >2 Of Calculation 'Yd /Ysw 2 U Diaphragm /Shear wall deflection ratio is 2 0 so assumption that diaphragm is flexible is okay per ASCE 7 -02 Section 9 5.2 3 1 Page A -10 Value 0 234 48,979 11 461 143 8,023 10,197 40 127 165 78 30 234 0 014 0 022 60 117 0 190 0 008 0 004 0 130 0 169 1 862 1 300 000 165 1 900,800 768 0 263 83,500 0 293 60 71 6 0 006 0 072 0 063 0 690 2 50 1 73 102 Standard Revised 01 /03RIdof Diaphragm Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 15 End Wall Diaphragm Shear (Ib) Diaphragm Span (ft) Diaphragm Length (ft) Diaphragm Unit Shear (Ib /ft) Diaphragm Moment (ft -Ib) Diaphragm Chord Force (Ib) Allowable Nail Load (Ib) Reep Engineering Consulting, Inc. Table J Roof Diaphragm Calculations (2 sheets) Diaphragm Chord Splice Stress Calculations Description Reference Equation /Comment Report Table G Design Drawings Design Drawings Calculation Calculation Calculation NDS Table 11N Adjustment For Wind /Seismic Loads NDS Table 2 3 2 Adjusted Allowable Nail Load (Ib) Calculation Minimum Number of Nails Required At SpliceslCalculation Maximum Nail Spacing at Splices (in) Minimum Splice Length (in) Calculation Design Splice Length (in) Design Drawings Allowable Diaphragm Chord Force (Ib) ICalculation Axial Chord Stess (psi) ICalculation Allowable Parallel Compressive Stress (psi) IWWPA Table 1 Allowable Parallel Tensile Stress (psi) IWWPA Table 1 Note 1 Diaphragms And Shear Wall Design /Construction Guide, November 2004 VEnd Q/2 b= L= y V/b M v /8 C= T =Mfb= H -F 10d Common 10- minute loads F 1 6FNail NN -Min C /FA S Lsplice SNN -Min 10d 6 -in o c. Fort C/A T/A No 2 Hem -Fir No 2 Hem -Fir Roof Uplift Calculations Description 1 Reference (Equation /Comment( Roof Truss Span, b (ft) I Design Drawings 1 Tributary Area to Truss Connection (sf) ITrusses 24 -in o cIA 2b/2 b I Maximum Wind Uplift Pressure (psf) 'Zone F For 120 -mph Wind Exposure C Maximum Wind Uplift Load At Connection (Ib)I Irup pH Roof Unit Dead Load w (psf) 1Design Criteria I Roof Dead Load to Truss Connection (Ib) I IbDL —1 3 W Net Load to Truss Connection (Ib) I I INet rup I Allowable Uplift For Simpson H2 5A Clip (Ib) ISPF /Hem -Fir with 160% Increase Maximum Wind Uplift Pressure (psf) (Zone F For 120 -mph Wind Exposure C Maximum Wind Uplift Load At Connection (1b)1 Irup PA Net Load to Truss Connection (Ib) I II rup DL Allowable Uplift For Simpson H1 Clip (Ib) ISPF /Hem -Fir with 160% Increase Page A -10 Value 5,098 40 0 64 0 127 65,259 1,631 102 16 163 2 100 40 40 0 48 0 2,122 99 1,250 500 Value 40 0 40 0 -20 9 838 150 400 -438 535 -20 9 838 438 400 Revised 01 /03Rbu7of Diaphragm Plan 1883 -07 Lateral -30 Snow, 120 mph, Exp C, SDC D2.xls 3/7/2007 16