Loading...
HomeMy WebLinkAbout123 W 7th St Technical - BuildingTECHNICAL Permit 6 2 Address 123 W 7+'' Project description N 3 v 76- vn Date the permit was finaled (a -09 Number of technical pages 52_ WL' one VonneS Sri c- ti beiSt3 S REPORTTM ICC Evaluation Service, Inc. www.icc- es.ora DIVISION 03— CONCRETE Section 03151 Concrete Anchoring REPORT HOLDER. HILTI, INC. 5400 SOUTH 122 EAST AVENUE TULSA, OKLAHOMA 74146 (800) 879 -8000 www.us.hilti.corn HiltiTechEnaeus.hilti.com EVALUATION SUBJECT HILTI KWIK BOLT TZ CARBON AND STAINLESS STEEL ANCHORS IN CONCRETE 1.0 EVALUATION SCOPE Compliance with the following codes. 2006 International Building Code (IBC) 2006 International Residential Code (IRC) 1997 Uniform Building Code (UBC) Property evaluated: Structural 2.0 USES The Hilti Kwik Bolt TZ anchor (KB -TZ) is used to resist static, wind and seismic tension and shear loads in cracked and uncracked normal- weight concrete and structural sand lightweight concrete having a specified compressive strength f' of 2,500 psi to 8,500 psi (17.2 MPa to 58 6 MPa); and cracked and uncracked normal- weight or structural sand lightweight concrete over metal deck having a minimum specified compressive strength, f' of 3 000 psi (20 7 MPa). The anchoring system is an alternative to cast -in -place anchors described in Sections 1911 and 1912 of the IBC and Sections 1923 1 and 1923.2 of the UBC The anchors may also be used where an engineered design is submitted in accordance with Section R301 1 3 of the IRC 3.0 DESCRIPTION KB -TZ anchors are torque controlled, mechanical expansion anchors. KB -TZ anchors consist of a stud (anchor body), wedge (expansion elements), nut, and washer The anchor (carbon steel version) is illustrated in Figure 1 The stud is manufactured from carbon or stainless steel materials with corrosion resistance equivalent to Type 304 stainless steel Carbon steel KB -TZ anchors have a minimum 5 pm (0 00002 inch) zinc plating. The expansion elements for the carbon and stainless steel KB -TZ anchors are fabricated from stainless steel with corrosion resistance equivalent to Type 316 Copyright 2007 ESR -1917 Reissued September 1 2007 This report is subject to re- examination in two years. Business/Regional Office 5360 Workman Mill Road, Whittier California 90601 (562) 699-0543 Regional Office 900 Montdair Road, Suite A, Birmingham, Alabama 35213 (205) 599-9800 Regional Office 4051 West Flossmoor Road, Country Club Hills, Illinois 60478 (708) 799 -2305 stainless steel The hex nut for carbon steel conforms to ASTM A 563 -04 Grade A, and the hex nut for stainless steel conforms to ASTM F 594 The anchor body is comprised of a high- strength rod threaded at one end and a tapered mandrel at the other end The tapered mandrel is enclosed by a three section expansion element which freely moves around the mandrel The expansion element movement is restrained by the mandrel taper and by a collar The anchor is installed in a predrilled hole with a hammer When torque is applied to the nut of the installed anchor the mandrel is drawn into the expansion element, which is in turn expanded against the wall of the drilled hole Installation information and dimensions are set forth in Section 4.3 and Table 1 Normal- weight and structural lightweight concrete must conform to Sections 1903 and 1905 of the IBC and UBC 4.0 DESIGN AND INSTALLATION 4.1 Strength Design 4.1 1 General: Design strengths must be determined in accordance with ACI 318 -05 Appendix D and this report. Design parameters are provided in Tables 3 and 4 Strength reduction factors 0 as given in ACI 318 D 4 4 must be used for load combinations calculated in accordance with Section 1605.2.1 of the IBC or Section 1612.2 of the UBC Strength reduction factors 0 as given in ACI 318 D 4.5 must be used for load combinations calculated in accordance with ACI 318 Appendix C or Section 1909.2 of the UBC Strength reduction factors 0 corresponding to ductile steel elements may be used An example calculation is provided in Figure 6 4.1.2 Requirements for Static Steel Strength in Tension. The steel strength in tension must be calculated in accordance with ACI 318 D.5 1 The resulting N values are provided in Tables 3 and 4 of this report. 4.1.3 Requirements for Static Concrete Breakout Strength in Tension: The basic concrete breakout strength in tension must be calculated according to ACI 318 Section D 5.2.2, using the values of h and k as given in Tables 3 and 4 in lieu of h and k, respectively The nominal concrete breakout strength in tension in regions where analysis indicates no cracking in accordance with ACI 318 Section D.5.2.6 must be calculated with WCN as given in Tables 3 and 4 For carbon steel KB -TZ installed in the soffit of structural sand lightweight or normal- weight concrete on steel deck floor and roof assemblies, as shown in Figure 5 calculation of the concrete breakout strength may be omitted. (See Section 41.5) 4.1.4 Requirements for Critical Edge Distance In applications where c c and supplemental reinforcement to control splitting of the concrete is not present, the concrete REPORTS' are not to be construed as repr ent, ig aesthetics or any othe attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, Inc. express or implied, as to any finding or other matter in this report, or as to any product covered by the report. ursi Accradtted Program PRODUCT CUm FIGTgM Page 1 of 14 Page 2 of 14 ESR 1917 breakout strength in tension for uncracked concrete, calculated according to ACI 318 Section D.5.2, must be further multiplied by the factor Wcp,N as given by the following equation. W CPN c (1) whereby the factor W CPN need not be taken as less than 1 5he, For all other cases, W CPN 1.0 Values for the c critical edge distance c must be taken from Table 3 or Table 4 4.1.5 Requirements for Static Pullout Strength j in Tension The pullout strength of the anchor in cracked and uncracked concrete, where applicable is given in Tables 3 and 4 In accordance with ACI 318 Section D.5 3.2, the nominal pullout strength in cracked concrete must be calculated according to the following equation. Nve,r NP. l 2,500 (lb psi) f Npnfc NP 11 17.2 (N, MPa) f c t N PP 00 NP 'l 2 500 (Ib psi) I f� NP„ NP, 1,117.2 (N MPa) (2) In regions where analysis indicates no cracking in accordance with ACI 318 Section D 5 3 6 the nominal pullout strength in tension must be calculated according to the following equation. (3) Where values for N or N are not provided in Table 3 or Table 4 the pullout strength in tension need not be evaluated. The pullout strength in cracked concrete of the carbon steel KB -TZ installed in the soffit of sand lightweight or normal weight concrete on steel deck floor and roof assemblies, as shown in Figure 5 is given in Table 3 In accordance with ACI 318 Section D.5 3.2, the nominal pullout strength in cracked concrete must be calculated according to Eq (2), whereby the value of NP deck, must be substituted for N The use of stainless steel KB -TZ anchors installed in the soffit of concrete on steel deck assemblies is beyond the scope of this report. In regions where analysis indicates no cracking in accordance with ACI 318 Section D.5 3.6 the nominal pullout strength in tension may be increased by W as given in Table 3 W is 1.0 for all cases. Minimum anchor spacing along the flute for this condition must be the greater of 3 0 hef or 1 times the flute width 4.1.6 Requirements for Static Steel Shear Capacity V In lieu of the value of V as given in ACI 318 Section D 6 1.2(c), the values of V given in Tables 3 and 4 of this report must be used The shear strength V deck as governed by steel failure of the KB -TZ installed in the soffit of structural sand lightweight or normal- weight concrete on steel deck floor and roof assemblies, as shown in Figure 5 is given in Table 3 4.17 Requirements for Static Concrete Breakout Strength of Anchor in Shear V or V Static concrete breakout strength shear capacity must be calculated in accordance with ACI 318 Section D.6.2 based on the values provided in Tables 3 and 4 The value of used in ACI 318 Equation (D -24) must taken as no greater than h 4 1.8 Requirements for Static Concrete Pryout Strength of Anchor in Shear VcP or V0P9. Static concrete pryout strength shear capacity must be calculated in accordance with ACI 318 Section D 6.3, modified by using the value of k0P provided in Tables 3 and 4 of this report and the value of Ncb or N cbg as calculated in Section 4 1.3 of this report. For anchors installed in the soffit of structural sand lightweight or normal- weight concrete over profile steel deck floor and roof assemblies, as shown in Figure 5 calculation of the concrete pry -out strength in accordance with ACI 318 Section D.6.3 is not required 4.1.9 Requirements for Minimum Member Thickness, Minimum Anchor Spacing and Minimum Edge Distance. In lieu of ACI 318 Section D.8 3 values of c and s as given in Tables 2 and 3 of this report must be used. In lieu of ACI 318 Section D 8 5 minimum member thicknesses h as given in Tables 3 and 4 of this report must be used Additional combinations for minimum edge distance c and spacing s may be derived by linear interpolation between the given boundary values. (See Figure 4 The critical edge distance at corners must be minimum 4h in accordance with ACI 318 Section D.8 6 4.1 10 Requirements for Seismic Design For load combinations including earthquake, the design must be performed according to ACI 318 Section D 3.3 as modified by Section 1908.1 16 of the IBC as follows: CODE IBC and IRC UBC ACI 318 D.3.3. CODE EQUIVALENT SEISMIC REGION DESIGNATION Seismic Design Categories C D E, and F Moderate or high Seismic Zones seismic risk 2B, 3, and 4 Moderate or high seismic risk The nominal steel strength and the nominal concrete breakout strength for anchors in tension, and the nominal concrete breakout strength and pryout strength for anchors in shear must be calculated according to ACI 318 Sections D.5 and D 6 respectively taking into account the corresponding values given in Tables 3 and 4 The anchors comply with ACI 318 D 1 as ductile steel elements and must be designed in accordance with ACI 318 Section D.3 3 4 or D 3.3.5 The nominal pullout strength N and the nominal steel strength for anchors in shear V must be evaluated with the values given in Tables 3 and 4 The values of N must be adjusted for concrete strength as follows NP, '1,2,500 (lb psi) f� NP .r N 17.2 (N MPa) (4) If no values for N or V are given in Table 3 or Table 4 the static design strength values govern (See Sections 41.5 and 416) 41 11 Structural Sand Lightweight Concrete: When structural lightweight concrete is used, values determined in Page 3 of 14 ESR 1917 accordance with ACI 318 Appendix D and this report must be modified by a factor of 0 60 4 1 12 Structural Sand Lightweight Concrete over Metal Deck. Use of structural sand lightweight concrete is allowed in accordance with values presented in Table 3 and installation details as show in Figure 5 4.2 Allowable Stress Design: 4.2.1 General Design resistances for use with allowable stress design load combinations calculated in accordance with Section 1605.3 of the IBC and Section 1612.3 of the UBC must be established as follows where R O R represents the limiting design strength in tension (ON„) or shear (OV as calculated according to ACI 318 Sections D 4 1 1 and D 4 1.2 and Section 4 1 of this report. For load combinations including earthquake, the value R in Equation (5) must be multiplied by 0 75 in accordance with ACI 318 Section D.3.3 3 Limits on edge distance, anchor spacing and member thickness, as given in Tables 3 and 4 of this report, must apply Allowable service loads for single anchors in tension and shear with no edge distance or spacing reduction are provided in Tables 6 through 9 for illustration. These values have been derived per Equation (5) using the appropriate strength reduction factors Ofrom Tables 3 and 4 and the a factors provided in Section 4.2 of this report. The value of a must be taken as follows REFERENCE FOR STRENGTH REDUCTION FACTORS ACI 318 Section D 4 4 ACI 318 Section D 4.5 4.2.2 Interaction: In lieu of ACI 318 D 7 1 D 7.2 and D 7 3 interaction must be calculated as follows For shear loads V 0.2 V the full allowable load in tension Tall„w,ASD may be taken For tension loads T s 0.2 Tallow,ASD, the full allowable load in shear Vallow,ASD may be taken For all other cases. 4.3 Installation T T allow,ASD R R allow,ASD a a V 1.2 V allow,ASD (5) Including Excluding Seismic Seismic 11 I 14 1.2 I 1.55 (6) Installation parameters are provided in Table 1 and in Figure 2. The Hilti KB -TZ must be installed according to manufacturer's published instructions and this report. Anchors must be installed in holes drilled into the concrete using carbide tipped masonry drill bits complying with ANSI B212.15 -1994 The nominal drill bit diameter must be equal to that of the anchor The drilled hole must exceed the depth of anchor embedment by at least one anchor diameter to permit over driving of anchors and to provide a dust collection area as required The anchor must be hammered into the predrilled hole until at least four threads are below the fixture surface The nut must be tightened against the washer until the torque values specified in Table 1 are achieved. For installation in the soffit of concrete on steel deck assemblies, the hole diameter in the steel deck not exceed the diameter of the hole in the concrete by more than 1 8 inch (3.2 mm). For member thickness and edge distance restrictions for installations into the soffit of concrete on steel deck assemblies, see Figure 5 4.4 Special Inspection. Special inspection is required, in accordance with Section 1704 13 of the IBC and Section 1701.5.2 of the UBC The special inspector must be on the jobsite continuously during anchor installation to verify anchor type, anchor dimensions, concrete type, concrete compressive strength, hole dimensions, hole cleaning procedures, anchor spacing edge distances, concrete thickness, anchor embedment, and tightening torque 5.0 CONDITIONS OF USE The Hilti KB -TZ anchors described in this report comply with the codes listed in Section 1.0 of this report, subject to the following conditions. 5.1 Anchor sizes dimensions and minimum embedment depths are as set forth in this report. 5.2 The anchors must be installed in accordance with the manufacturer's published instructions and this report. In case of conflict, this report governs. 5.3 Anchors must be limited to use in cracked and uncracked normal- weight concrete and structural sand lightweight concrete having a specified compressive strength, f' of 2,500 psi to 8,500 psi (17.2 MPa to 58 6 MPa), and cracked and uncracked normal- weight or structural sand lightweight concrete over metal deck having a minimum specified compressive strength f' of 3,000 psi (20 7 MPa). 5.4 The values of used for calculation purposes must not exceed 8 000 psi (55 1 MPa) 5.5 Loads applied to the anchors must be adjusted in accordance with Section 1605.2 of the IBC and Sections1612.2 or 1909.2 of the UBC for strength design, and in accordance with Section 1605 3 of the IBC and Section 1612.3 of the UBC for allowable stress design. 5.6 Strength design values must be established in accordance with Section 4 1 of this report. 5.7 Allowable design values are established in accordance with Section 4.2. 5.8 Anchor spacing and edge distance as well as minimum member thickness must comply with Tables 3 and 4 5.9 Prior to installation, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed 5.10 Since an ICC -ES acceptance criteria for evaluating data to determine the performance of expansion anchors subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report. 5.11 Anchors may be installed in regions of concrete where cracking has occurred or where analysis indicates cracking may occur (f, f subject to the conditions of this report. 5.12 Anchors may be used to resist short-term loading due to wind or seismic forces, subject to the conditions of this report. 5.13 Where not otherwise prohibited in the code KB -TZ anchors are permitted for use with fire- resistance -rated Page 4 of 14 construction provided that at least one of the following conditions is fulfilled. Anchors are used to resist wind or seismic forces only Anchors that support a fire resistance -rated envelope or a fire- resistance -rated membrane are protected by approved fire resistance- rated materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards. Anchors are used to support nonstructural elements. 5.14 Use of zinc- coated carbon steel anchors is limited to dry interior locations. 5.15 Special inspection must be provided in accordance with Section 4 4 5.16 Anchors are manufactured by Hilti AG in Schaan, Liechtenstein, under a quality control program with inspections by Underwriters Laboratories Inc. (AA -637) 6.0 EVIDENCE SUBMITTED ESR 1917 6.1 Data in accordance with the ICC -ES Acceptance Criteria for Mechanical Anchors in Concrete Elements (AC193), dated January 2007 (ACI 355.2). 6.2 A quality control manual 7.0 IDENTIFICATION The anchors are identified by packaging labeled with the manufacturer's name (Hilti, Inc.) and contact information, anchor name, anchor size, evaluation report number (ICC -ES ESR 1917), and the name of the inspection agency (Underwriters Laboratories Inc.). The anchors have the letters KB -TZ embossed on the anchor stud and four notches embossed into the anchor head, and these are visible after installation for verification. Page 5 of 14 ESR 1917 mandrel SETTING INFORMATION Anchor O.D. Nominal bit diameter Effective min. embedment Min. hole depth Min. thickness of Fastened parts Installation torque Min. dia. of hole in fastened part Standard anchor lengths Threaded length (incl. dog point) Unthreaded length expansion element Symbol de dar het he fmm T nst dh la ch thread tunthr TABLE 1— SETTING INFORMATION (CARBON STEEL AND STAINLESS STEEL ANCHORS) Units 3/8 In. 0.375 (mm) (9.5) In. FIGURE 1 —HILTI CARBON STEEL KWIK BOLT TZ (KB -TZ) col ar bolt 3/8 setting assist 1/2 0.5 (12.7) 1/2 In. 2 1/8 2 1/8 (mm) (54) (54) UNC thread Nominal anchor diameter (in.) hex nut dog point In. 2 2 3 -1/4 3 -1/8 4 3 -3/4 4 -3/4 (mm) (51) (51) (83) (79) (102) (95) (121) In. 2 5/8 2 5/8 4 3 -7/8 4 -3/4 4 -5/8 5 -3/4 (mm) (67) (67) (102) (98) (121) (117) (146) In. 1/4 3/4 1/4 3/8 3/4 1/8 1 -5/8 (mm) (6) (19) (6) (9) (19) (3) (41) ft -lb 25 40 60 110 (Nm) (34) (54) (81) (149) In. 7/16 9/16 11/16 13/16 (mm) (11 1) (14.3) (17.5) (20.6) 5/8 I 3/4 0.625 0.75 (15.9) (19.1) 5/8 3/4 In. 3 1 3 -314 I 5 I 3.3/4 4-1/2 15 -1/2 I 7 14 -3/4 I 6 18 -112 I 10 15 -1/2 I 8 I 10 (mm) (76) I (95) I (127) I (95) I (114) I (140) I (178) I (121) I (152) I (216) I (254) I (140) I (203) I (254) In. 7/8 11 5/8 12 718 11 518 2 318 13 -3/8 4 -718 11 -112 12 3/4 15 -114 16 -314 11 -1/2 1 I 6 (mm) (22) I (41) I (73) I (41) I (60) I (86) I (124) I (38) I (70) I (133) I (171) I (38) I (102) I (152) 3 -1/4 4 (83) (102) 1 The minimum thickness of the fastened part is based on use of the anchor at minimum embedment and is controlled by the length of thread. If a thinner fastening thickness is required, increase the anchor embedment to suit. Page 6 of 14 ESR 1917 (thread tunthr Length ID marking on bolt head Length of From anchor Up to but r ch (inches) not including tanch I 1'Y2 d FIGURE 2 —KB -TZ INSTALLED her th h TABLE 2— LENGTH IDENTIFICATION SYSTEM (CARBON STEEL AND STAINLESS STEEL ANCHORS) A B C D E F G H I J K L M N O P Q R S T U V W 2 21/2 3 31/2 4 41/2 5 51/2 6 61/2 7 71/2 8 8' 9 91/2 10 11 12 13 14 15 2 21/2 3 31/2 4 41/2 5 5 6 6 1 7 7 1 8 8'1 9 91/2 10 11 12 13 14 15 16 FIGURE 3 —BOLT HEAD WITH LENGTH IDENTIFICATION CODE AND KB -TZ HEAD NOTCH EMBOSSMENT Page 7 of 14 ESR 1917 DESIGN INFORMATION Symbol Units Anchor O.D Effective min. embedment' Min member thickness Critical edge distance Min. edge distance Min. anchor spacing d her c Cm„ for s Sm� for c Min. hole depth in concrete h Min. specified yield strength fy Min. specified ult. strength f„ Effective tensile stress area A Steel strength in tension N Steel strength in shear V Steel strength in shear seismic' V ors Steel strength in shear concrete on metal deck" V ,deck Pullout strength uncracked concretes N°• Pullout strength cracked concretes N Pullout strength concrete on metal decks N °•deck, Anchor category' Effectiveness factor uncracked concrete Effectiveness factor k cracked concrete 4 k„ sr/k, 9 Coefficient for pryout strength, k Strength reduction factor 0 for tension, steel failure modes Strength reduction factor 0 for shear steel failure modes Strength reduction 0 factor for tension, concrete failure modes or pullout, Condition B" Strength reduction 0 factor for shear concrete TABLE 3- DESIGN INFORMATION, CARBON STEEL KB -TZ In. (mm) In. (mm) In. (mm) In. (mm) In. (mm) In. (mm) In. (mm) In. (mm) In. (mm) lb/in` (N /mm lb/in` (N /mm In` (mm lb (kN) lb (kN) lb (kN) lb (kN) lb (kN) lb (kN) lb (kN) Nominal anchor diameter 3/8 I 1/2 5/8 3/4 0.375 (9.5) 2 2 (51) (51) 4 5 4 6 (102) (127) (102) 4 -3/8 4 5 -1/2 (111) (102) 2 1/2 (64) 5 (127) 2 1/2 (64) 3 -5/8 (92) 2 5/8 (67) 100,000 (690) 125 000 (862) 0 052 (33.6) 6,500 (28.9) 3,595 (16.0) 2,255 (10 0) 2130 (9.5) 2,515 (11.2) 2,270 (10 1) 1 460 (6.5) 10 0.5 (12.7) (152) 4 -1/2 (140) (114) 2 3/4 (70) 5 -3/4 (146) 2 3/4 (70) 4 -1/8 (105) 2 5/8 (67) 84,800 (585) 106 000 (731) 0 101 (65.0) 10 705 (47 6) 6,405 (28.5) 6 405 (28.5) 3,000 4 945 (13.3) (22) NA 5,515 (24.5) NA 4 915 (21.9) 1 460 2,620 (6.5) (11 7) 3 -1/4 3 -1/8 (83) (79) 6 8 5 (152) (203) (127) 7 1/2 I 6 6 -1/2 (191) I (152) (165) 2 3/8 3 -5/8 (60) (92) 5 -3/4 6 -1/8 (146) (156) 2 3/8 3 -1/2 (60) (89) 3 -1/2 4 -3/4 (89) (121) 4 3 -7/8 (102) (98) 1 41 0 75 0.65 0.65 0 70 4 600 (20.5) NA NA 2,000 (8.9) 1 24 17 0.625 (15.9) 4 (102) (95) 6 I 8 6 8 (152) I (203) (152) (203) 8 -3/4 6 -3/4 10 8 (222) (171) (254) (203) 3 -1/4 4 -3/4 (83) (121) 5 -7/8 10 -1/2 (149) (267) 3 5 (76) (127) 4 -1/4 9 -1/2 (108) (241) 4 -3/4 4 -5/8 (121) 84,800 (585) 106,000 (731) 0.162 (104 6) 17 170 (76.4) 10,555 (47 0) 10,555 (47 0)_ 6,040 (26.9) 9,145 (40.7) 4,645 (20 7) 2.0 0 75 (19 1) 3 -3/4 (117) 84,800 (585) 106,000 (731) 0.237 (152.8) 25,120 (111.8) 15,930 (70.9) 14,245 (63.4) NP 8,280 (36.8) NA NA NP 4 -3/4 (121) 8 (203) 9 (229) 4 -1/8 (105) 8 -7/8 (225) 4 (102) 7 3/4 (197) 5 -3/4 (146) NP 10 680 (47.5) NA NP failure modes, Condition B" For SI: 1 inch 25.4 mm, 1 lbf 4 45 N, 1 psi 0.006895 MPa For pound -inch units: 1 mm 0.03937 inches. 'See Fig. 2. 2 For structural light- weight concrete over metal deck, see Figure 5. 3 See Section 4 1 10 of this report. "See Section 4.1.6. NP (not permitted) denotes that the condition is not supported by this report. 5 See Section 4.1.5 of this report. NA (not applicable) denotes that this value does not control for design. 'See Section 4.1.5 of this report. NP (not permitted) denotes that the condition is not supported by this report. Values are for cracked concrete. Values are applicable to both static and seismic load combinations. 'See ACI 318 -05 Section D 4 4 tee ACI 318 -05 Section D.5.2.2. 'See ACI 318 -05 Section D.5.2.6. ''The KB -TZ is a ductile steel element as defined by ACI 318 Section D.1 "For use with the load combinations of ACI 318 Section 9.2. Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D.4 4 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. Page 8 of 14 ESR 1917 DESIGN INFORMATION Anchor O.D Effective min. embedment' Min. member thickness Critical edge distance Min. edge distance Min anchor spacing Min. hole depth in concrete Min. specified yield strength Min. specified ult. Strength Effective tensile stress area Steel strength in tension Steel strength in shear Pullout strength in tension, seismic Steel strength in shear seismic Pullout strength uncracked concrete Pullout strength cracked concrete Coefficient for pryout strength, k Symbol Units d h hmfn c cmm for s Smin for c z h f f„ A N V V eis N Anchor category' Effectiveness factor k,,,,,, uncracked concrete Effectiveness factor k,, cracked concrete �c. k,,rn,/ku Strength reduction factor 0 for tension, steel failure modes' Strength reduction factor 0 for shear steel failure modes' Strength reduction 0 factor for tension, concrete failure modes, Condition B TABLE 4- DESIGN INFORMATION, STAINLESS STEEL KB -TZ in (mm) in. (mm) in. (mm) in. (mm) in. (mm) in. (mm) in. (mm) in. (mm) in. (mm) lb /in (N /mm lb /in` (N /mm in (mm lb (kN) lb (kN) lb 3/8 0.375 (9 5) 2 (51) 4 5 (102) (127) 4 -3/8 I 3 -7/8 (111) I (98) 2 1/2 (64) 5 (127) 2 1/4 (57) 3 -1/2 (89) 2 5/8 (67) 92,000 (634) 115,000 (793) 0.052 (33.6) 5 968 (26.6) 4,870 (21 7) N NA (kN) lb (kN) lb (kN) lb (kN) 2,825 (12.6) 2,630 (11 7) 2,340 (10 4) 17 1 41 I Nominal anchor diameter 1/2 I 5/8 0.5 0 625 (12.7) (15.9) 2 I 3 -1/4 I 3 -1/8 4 (51) I (83) I (79) (102) 4 6 6 815 618 (102) I (152) I (152) (203) I (127) (152) I (203) 5 -1/2 4 -1/2 7 1/2 6 7 8 -7/8 6 (140) (114) I (191) (152) (178) (225) (152) 2 -7/8 2 1/8 3 -1/4 2 3/8 (73) (54) (83) (60) 5 -1/4 5 -1/2 5 -1/2 (133) (140) (140) 2 2 3/4 2 3/8 (51) (70) (60) 3 -1/4 4 -1/8 4 -1/4 (83) (105) (108) 4 3 -7/8 4 -3/4 (102) (98) (121) 5 -3/4 (146) 2 7/8 (73) 4 -1/2 (114) 2 5/8 (67) 92,000 (634) 115,000 (793) 0.101 (65.0) 11,554 (51 7) 6,880 (30.6) 2,735 (12.2) 6,880 (30 6) NA 5,760 (25.6) 92,000 (634) 115,000 (793) 0 162 (104 6) 17,880 (82.9) 11,835 (52.6) NA 11,835 (52.6) NA NA 3,180 5,840 NA NA (14 1) (26.0) 1 24 24 I 17 I 17 .I 17 1.00 I 1 41 11 41 I 1 41 I 0 75 0 65 0 65 1 0 2.0 0 70 3/4 0.75 (19 1) 3 -3/4 (95) 6 I 8 (152) j (203) 10 I 7 (254) I (178) 4 -1/4 (108) 10 (254) 5 (127) 9 -1/2 (241) 4 -5/8 (117) 76 125 (525) 101,500 (700) 0.237 (152.8) 24,055 (107.0) 20,050 (89.2) NA 14 615 (65.0) 12,040 NA 8,110 (36.1) 24 1.00 I 4 -3/4 (121) 8 (203) 9 (229) 4 (102) 8 -1/2 (216) 4 (102) 7 (178) 5 -3/4 (146) (53.6) NA 17 Strength reduction 0 factor for shear concrete failure modes, Condition B For SI: 1 inch 25.4 mm, 1 Ibf 4.45 N, 1 psi 0.006895 MPa For pound -inch units: 1 mm 0.03937 inches 'See Fig. 2. 'See Section 4 1 10 of this report. NA (not applicable) denotes that this value does not control for design. 'See Section 4 1.5 of this report. NA (not applicable) denotes that this value does not control for design. tee ACI 318 -05 Section D 4.4 'See ACI 318 -05 Section D.5.2.2. 6 See ACI 318 -05 Section D.5.2.6. 'The KB -TZ is a ductile steel element as defined by ACI 318 Section D.1 'For use with the load combinations of ACI 318 -05 Section 9.2. Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D 4 4 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. Page 9 of 14 ESR 1917 3/8 2 2 1/2 3 1/4 5/8 3 1/8 4 3 3/4 3/4 4 3/4 For SI: 1 lbf 4 45 N, 1 sde ign Cdesign 1 168 1 576 2,561 3 078 4,246 3,844 4,959 psi 0.00689 MPa 1,221 1,576 2,674 3,078 4 457 4 046 5,590 h h,, FIGURE 4- INTERPOLATION OF MINIMUM EDGE DISTANCE AND ANCHOR SPACING TABLE 5 -MEAN AXIAL STIFFNESS VALUES R FOR KB -TZ CARBON AND STAINLESS STEEL ANCHORS IN NORMAL WEIGHT CONCRETE (10 /in.) Concrete condition I carbon steel KB -TZ, all diameters I stainless steel KB -TZ, all diameters uncracked concrete I 700 I 120 cracked concrete I 500 I 90 'Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application. TABLE 6 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE STATIC TENSION (ASD), NORMAL WEIGHT UNCRACKED CONCRETE, CONDITION B (pounds)1'2' 3 Concrete Compressive Strength Nominal Embedment Anchor Depth he, fc 2,500 psi I f'c 3,000 psi I f'c 4 000 psi I f'c 6,000 psi Diameter (in.) Carbon Stainless Stainless steel steel steel Carbon steel 1,279 1 726 2,805 3 372 4 651 4,211 5 432 e design 1,338 1 726 2,930 3,372 4 883 4 432 6,124 For pound -inch units: 1 mm 0.03937 inches C min at s hmin Cdesign edge distance c Carbon Stainless Carbon Stainless steel steel steel steel 1 477 1 545 1 809 1,892 1993 1,993 2,441 2,441 3,239 3,383 3,967 4 143 3,893 3,893 4 768 4 768 5,371 5 638 6 578 6,905 4 863 5 118 5,956 6,268 6,272 7 071 7,682 8 660 'Values are for single anchors with no edge distance or spacing reduction. For other cases, calculation of Rd as per ACI 318 -05 and conversion to ASD in accordance with Section 4.2.1 Eq. (5) of this report is required. 2 Values are for normal weight concrete. For sand lightweight concrete, multiply values by 0.60 3 Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D 4 4 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. Page 10 of 14 ESR 1917 TABLE 7 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE STATIC TENSION (ASD), NORMAL WEIGHT CRACKED CONCRETE, CONDITION B (pounds)1.2, 3 Concrete Compressive Strength Nominal Embedment f'c 2,500 psi 3,000 psi f'c 4 000 psi fc 6,000 Anchor Depth h I i f p p I p I psi p Diameter (in.) Carbon Stainless Carbon Stainless Carbon Stainless Carbon Stainless steel steel steel steel steel steel steel steel I 3/8 2 I 1 054 1/2 2 I 1 116 31/4 2,282 5/8 3 1/8 2,180 4 3 157 3/4 3 3/4 I 2,866 4 3/4 I 4 085 For SI: 1 Ibf 4 45 N 1 psi 0.00689 MPa 1 086 1 476 2,312 2,180 2,711 3 765 4 085 1 155 1,223 2,500 2,388 3 458 3 139 4 475 For pound inch units: 1 mm 0 03937 inches 3/8 1 669 1/2 2,974 5/8 4,901 3/4 I 7,396 For SI: 1 Ibf 4 45 N 1 190 1 617 2,533 2,388 2,970 4 125 4 475 1 333 1 412 2,886 2,758 3,994 3,625 5,168 TABLE 8 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE STATIC SHEAR LOAD (ASD), (pounds) Nominal Allowable Steel Capacity, Static Shear Anchor Diameter Carbon Steel Stainless Steel 2,661 3 194 5 495 9,309 'Values are for single anchors with no edge distance or spacing reduction due to concrete failure 1 374 1 868 2,925 2,758 3,430 4 763 5 168 1 633 1 729 3,535 3 377 4,891 4 440 6,329 1 683 2,287 3,582 3 377 4,201 5 833 6,329 'Values are for single anchors with no edge distance or spacing reduction. For other cases, calculation of Rd as per ACI 318 -05 and conversion to ASD in accordance with Section 4.2.1 Eq. (5) is required. 2 Values are for normal weight concrete. For sand lightweight concrete multiply values by 0.60 3 Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D 4 4 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. Page 11 of 14 ESR 1917 Nominal Embedment Anchor Depth h Diameter (in.) 3/8 TABLE 9 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE SEISMIC TENSION (ASD), NORMAL WEIGHT CRACKED CONCRETE, CONDITION B (pounds) Concrete Compressive Strength 1/2 5/8 3/4 2 1 006 2 1 065 3 1/4 I 2,178 3 1/8 I 2,081 4 I 3 014 3 3/4 I 2,736 4 3/4 I 3,900 fc 2,500 psi Carbon Stainless steel steel For SI: 1 lbf 4 45 N 1 psi 0 00689 MPa For pound -inch units: 1 mm 0 03937 inches 'Values are for single anchors with no edge distance or spacing reduction. For other cases, calculation of Rd as per ACI 318 -05 and conversion to ASD in accordance with Section 4.2.1 Eq. (5) is required. 2 Values are for normal weight concrete. For sand lightweight concrete multiply values by 0.60 'Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D 4 4 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. 1 037 1,212 2,207 2,081 2,588 3,594 3,900 TABLE 10 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE SEISMIC SHEAR LOAD (ASD), (pounds) Nominal Anchor Diameter f'c 3,000 psi Carbon steel 1 102 1 167 2,386 2,280 3,301 2,997 4,272 Stainless steel 1 136 1,328 2,418 2,280 2,835 3,937 4,272 Allowable Steel Capacity, Seismic Shear Carbon Steel Stainless Steel 3/8 999 1,252 1/2 I 2,839 3 049 5/8 I 4 678 5,245 3/4 I 6,313 6 477 For SI: 1 lbf 4 45 N 'Values are for single anchors with no edge distance or spacing reduction due to concrete failure. f'c 4,000 psi f c 6,000 psi Carbon Stainless steel steel 1,273 1 312 1,348 I 1,533 2,755 2,792 2,632 2,632 3 812 I 3,274 3 460 I 4 546 4 933 4 933 Carbon steel 1,559 1 651 3 375 3,224 4 669 4,238 6,042 Stainless steel 1 607 1,878 3,419 3,224 4,010 5,568 6 042 Page 12 of 14 ESR 1917 TABLE 11 —KB -TZ CARBON STEEL ALLOWABLE TENSION AND SHEAR LOADS (ASD), INSTALLED INTO THE UNDERSIDE OF A STRUCTURAL SAND LIGHTWEIGHT CONCRETE OVER METAL DECK SLAB (pounds) NOMINAL EMBEDMENT TENSION TENSION SHEAR SHEAR ANCHOR DEPTH, h SEISMIC NONSEISMIC SEISMIC NONSEISMIC DIAMETER (inches) 3/8 2 709 743 I 944 989 1/2 2 709 743 1,330 1 393 1/2 3-1/4 1,272 1,333 2,192 2,296 5/8 3-1/8 971 1 017 1 2,039 2,136 5/8 I 4 2,255 2,362 I 2,677 2,804 For SI 1 plf 4 45 N, 1 inch =25 4 mm 'Pullout strength values N are for anchors installed in structural sand lightweight concrete having a minimum 2,500 psi compressive strength at the time of installation See Table 3. The values listed in Table 11 have been calculated assuming a minimum 3 000 psi concrete compressive strength The pullout strengths may be adjusted for other lightweight concrete compressive strengths in accordance with Section 4 1.5 using the following reduction equation. Np,deck,fc Np,deck f; (lb psi)* 2,500 Np,deck,rc Np,deck f (N, MPa)* 17.2 *This equation can be used for structural sand lightweight concrete compressive strengths between 2,500 psi and 4 000 psi (17 MPa and 28 MPa). Z Minimum anchor spacing along the flute shall be the greater of 3.0h or 1.5 times the flute width in accordance with Section 4 1 4 3 Anchors in the lower flute may be installed with a maximum 1 -inch offset in either direction. See Figure 5 4 Allowable seismic tension and shear loads are calculated by multiplying N and V by the strength reduction factor of 0 65 the seismic reduction 1 factor of 0 75 according to ACI 318 D3.3 3 and the dividing by an a of 1 1 in accordance with Section 4.2.1 5 Allowable nonseismic tension and shear loads are calculated by multiplying N and Vs,deck by the strength reduction Cofactor of 0 65 and dividing by an a of 1 4 in accordance with Section 4.2.1 Allowable nonseismic loads are calculated assuming the lightweight concrete over metal deck is cracked. Page 13 of 14 ESR 1917 a u) U Z d MIN. 3,000 PSI NORMAL OR SAND LIGHTWEIGHT CONCRETE UPPER FLUTE (VALLEY) MIN. 4 -112' MIN. 4 -1/2' I I_ MIN. 12' TYP I MAX.1 OFFSET TYP MIN. 20 GAUGE STEEL W -DECK LOWER FLUTE (RIDGE) FIGURE 5— INSTALLATION IN THE SOFFIT OF CONCRETE OVER METAL DECK FLOOR AND ROOF ASSEMBLIES Page 14 of 14 ESR 1917 Given Two 1 /2 -inch KB -TZ anchors under static tension load as shown h 3.25 in. Normal wt. concrete, c 3 000 psi No supplementary reinforcing Assume uncracked concrete Condition B per ACI 318 D 4 4 c) Calculate the allowable tension load for this configuration 6' Calculation per ACI 318 -02 Appendix D and this report. A l t Tallow y A v Step 1 Calculate steel capacity' ON OnA 0 75 x 2 x 0 101 x 106,000 16,059lb Check whether f is not greater than 1 9f and 125,000 psi Step 3 Calculate concrete breakout strength of anchor in tension. Ncbg ANC Wec,NVed,NVc,NV'cp,NNb NCO Step 3a. Verify minimum member thickness, spacing and edge distance s mi hm,n 6 in 6 in. ok slope 2.375 5 75 3 0 P 3.5 2.375 For Cmin 4in 2.375 controls s 5 75 [(2.375 4.0)( 3.0)] 0.875 2.375in 6in ok 0.875 A Step 3b For AN check 1.5h 1.5(3.25) 4.88 in c 3.0h 3(3.25) 9 75 in s Step 3c Calculate AN0 and AN for the anchorage ANo 9ha, 9 x (3.25) 95.1 in A (1 5h c)(3he, s) [1.5 x (3.25) 4] [3 x (3.25) 6] 139.8 in 2 A ok Step 3d. Determine U eN 0 Wec,N 1.0 Step 3e. Calculate Nb. Nb kuncr fc 17 15 17 X V3 000 x 3.25 =5 456 lb Step 3f Calculate modification factor for edge distance tved,N 0.7 +0.3 4 0.95 1.5(3.25) FIGURE 6- EXAMPLE CALCULATION 1 1.5h c A -A cmi D.5.2.1 D.8 AC 1.5h s 6' 1.5h Code Report Ref Ref D 5 1.2 Table 3 D44a) §41.2 §41.3 Table 3 Fig 4 D.5.2.1 Table 3 D.5.2.1 Table 3 D 5.2 4 D.5.2.2 Table 3 D.5.2.5 Table 3 Step 3g yr N =1 41 (uncracked concrete) D.5.2.6 Table 3 Step 3h. Calculate modification factor for splitting Wcp N max e f check 4 0.53; 1.5 3.25 0.65 c;1.5h c ac 7.5 7.5 1.5h 0.65 0.53 controls eac Step 3i. Calculate (DN (DN 0 65 x 139.8 x 1 00 x 0.95 x 1 41 x 5 456 x 0 65 4,539 lb D.5.2.1 4 1.2 95 1 D 4 4 c) Table 3 Step 4 Check pullout strength: Per Table 3 OnNpn,rc 0 65x2x5,515 lb 3,000 7,852 lb >4539 OK D.5.3.2 4 1.5 12 D 4 4 c) Table 3 I Step 5 Controlling strength. 'N 4,539 lb OnN ON ON controls I D 4 1.2 I Table 3 Step 6 Convert value to ASD• Tallow 4 3,242 lb 4 l4 §41.3 Table 3 :4f A. Abrous, Ph D P E PLAN 1768 -08 [30 -PSF SNOW, 120 mph, Exp C, SDC D2] PROJECT INFORMATION AND CRITERIA 1 PROJECT INFORMATION OWNER /ADDRESS TAX PARCEL NUMBER/SITE ADDRESS JOB NUMBER 2 STRUCTURAL DESIGNER INFORMATION ABDELOUAHAB (Wahab) ABROUS Ph D P E HiLine Homes Inc Engineering Department 11306 62ND Ave E Puyallup WA 98373 Phone (253) 770 -2244 Ext. 132 Email Wabrous(a�HiLinehomes.com TYPE OF DESIGN Revised 9/3/2008 Washington Licence No 36110 Oregon License No 81419PE EXTENT OF DESIGN T4LE REFERENCE CODES AND STANDARDS HiLine Homes, Inc. Page 1 of 37 See Permit Application See Permit Application See Job Binder Note The Above stamp applies to the structural members and assemblies described in the following calculations only and is valid with a copied or wet stamp intended for reuse by HiLine Homes Inc. 3 SCOPE OF DESIGN LATERAL ENGINEERING ANALYSIS OF WIND AND SEISMIC FORCES Structural specifications for residence 2006 International Building Code (IBC) 2006 International Residential Code (IRC) National Design Specification (NDS) American Society of Civil Engineers (ASCE) Standard 7 American Society for Testing Materials (ASTM) Standard A307 American Plywood Association (APA) Diaphragms and Shear Wall Design /Construction Guoide November 2004 PROJECT INFORMATION AND CRITERIA 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Printed 10/20/2008 A. Abrous, Ph.D., P E GROUND SNOW LOAD (LIVE LOAD) ROOF DEAD LOAD EXTERIOR WALL DEAD LOAD INTERIOR WALL DEAD LOAD SEISMIC DESIGN CATEGORY BASIC WIND SPEED WIND EXPOSURE FACTOR ALLOWABLE SOIL PRESSURE MATERIAL SPECIFICATIONS Revised 9/3/2008 HiLine Homes, Inc. Page 2 of 37 4 DESIGN CRITERIA ILroof 30 -psf maximum Droof 15 -psf Dwaii 15 -psf I Dwal1 10 -psf ISDC D2 1120 -mph IC 11 500 -psf Framing Material No 2 Hem -Fir minimum Wood Structural Panels APA Rated 10d Nails Diameter 0 148 -in 8d Nails Diameter 0 131 -in Concrete Strength 28 -days 2 500 -psi Anchor Bolts ASTM A307 Steel CONTENTS Project Information and Criteria I Page 1 Description I Page 3 Specifications and Design Criteria I Page 3 Engineering Calculations I Page 3 LIST OF TABLES Table A. Structural Specifications and Allowable Loads Page 6 Table B Building Data Page 16 Table C Wind Design Criteria Page 17 Table D Seismic Design Criteria Page 18 Table E -1 Wind Loads (House) Page 19 Table E -2 Wind Loads (Garage) Page 21 Table F -1 Minimum Wind Loads (House) Page 22 Table F -2 Minimum Wind Loads (Garage) Page 24 Table G -1 Seismic Loads (House) Page 25 Table G -2 Seismic Loads (Garage) Page 27 Table H Controlling Shear Loads Page 28 Table I -1 Wind Shear Wall Loads (House) Page 29 Table 1 -2 Wind Shear Wall Loads (House +Garage) Page 30 Table J -1 Seismic Shear Wall Loads (House) Page 32 Table J -2 Seismic Shear Wall Loads (House +Garage) Page 33 Table K. Roof Diaphragm Load Calculations Page 35 PROJECT INFORMATION AND CRITERIA Printed 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 10/20/2008 A. Abrous, Ph.D P E. DESCRIPTION SPECIFICATIONS AND DESIGN CRITERIA ENGINEERING CALCULATIONS Revised 9/3/2008 HiLine Homes, Inc. Page 3 of 37 This report provides engineering calculations and structural design sepcifications for HiLine Homes Plan 1768b The two story house is 1768 sf in area plus an optional two car garage Design specifications are provided in Table A, building data are given in Table B and wind and seismic criteria including calculations are included in Tables C and D respectively Laterial engineering calculations are provided in Tables E through K. Calculations are performed using Microsoft Excel worksheets Structural specifications and design criteria are provided in Tables A, B C and D as discussed in the following paragraphs Table A. Specifications of Structural Components and Fasteners Specifications are provided for size and spacing of anchors bolts shear wall hold downs shear wall sheathing and nailing shear transfer and roof framing Structural specifications are identified with respect to Wall Lines which are shown on Plan Sheet S2 Table B Building Data The building geometrical dimensions are specified including lengths of exterior walls and interior partitions for the transverse and longitudinal directions The maximum ground snow load is P of 30 psf Table C Wind Design Criteria ASCE Standard 7 Section 6 4 Method 1 Simplified Procedure is used for determining wind loads Wind design criteria are based on an 120 mph basic wind speed and Building Height and Exposure Factor (A) C or an equivalent 110 -mph basic wind speed and Building Height and Exposure Factor (A) D Overturning moments due to wind forces are less than allowable restorative dead load moments as shown in Table G Uplift loads for roof tributaries are calculated assuming the maximum uplift for wind Zone E or F applies to the tributary area Table D Seismic Design Criteria Seismic design loads are based on Site Class D soils per ASCE Standard 7 Section 11 4 2 and Table 20 3 -1 for stiff soils The Equivalent Lateral Force Procedure of the American Society of Civil Engineers (ASCE) Standard 7 Section 12 8 is used for calculating seismic forces. PROJECT INFORMATION AND CRITERIA 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Printed 10/20/2008 A. Abrous, Ph.D., P E Revised 9/3/2008 HiLine Homes, Inc. Page 4 of 37 Engineering calculations are documented in Tables E through K based on specifications in Tables B C and D These tables provide the following information Table E Wind Loads Wind loads and overturning moments are calculated in Table E for two orthogonal directions transverse and longitudinal Calculated values are linked to Table H Controlling Shear Loads to determine if wind minimum wind or seismic loads control design of lateral restraint. Unit uplift on the building is also calculated for both the transverse and longitudinal directions Overturning loads due to design base winds are calculated with a link to Table G Seismic Loads where they are compared to seismic and building restoring loads Table F Minimum Wind Minimum wind loads are provided in Table F based on horizontal pressures equal to 10 -psf and vertical pressures equal to zero per ASCE 7 Section 6 4.2 1 1 Calculations are performed for both transverse and longitudinal directions and linked to Table H for comparison to wind and seismic loads Table G Seismic Loads Table G provides seismic shear loads based on seismic criteria in Table D Calculations are based on seismic design criteria in Table D and the Lateral Force Procedure method of ASCE Standard 7 Section 12 8 This procedure is valid for Occupancy Category I or II buildings of light frame construction not exceeding three stories in height for SDC D and higher per ASCE 7 Table 12 6 1 Seismic loads are calculated for transverse and longitudinal directions Overturning moments are calculated in the table and compared to allowable restoring dead load moments the building is stable with respect to overturning Table H Controlling Shear Loads Table H provides a summary of seismic shear loads Shear load values from Tables E F and G are compared to determine controlling lateral forces The controlling values are linked to Tables I and K for calculating maximum shear wall loads for wind and seismic forces respectively Table I Wind Shear Loads Table H provides transverse and longitudinal loads on the building structure including wall length applied unit shear shear wall length resistive unit shear unit drag load unit dead load on shear walls and hold -down loads for the various shear wall lengths based on controlling wind shear loads from Table J Shear wall hold downs are calculated based on wind and dead load combinations using the allowable stress design method per ASCE Standard 7 Section 2 4 PROJECT INFORMATION AND CRITERIA 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Printed 10/20/2008 A. Abrous, Ph.D., P E. Revised 9/3/2008 HiLine Homes, Inc Page 5 of 37 Table J Seismic Shear Loads Table J provides transverse and longitudinal loads on the building structure including wall length applied unit shear shear wall length resistive unit shear unit drag load unit dead load on shear walls and hold -down loads for the various shear wall lengths based on seismic shear loads from Table H Shear wall hold -down loads are calculated based on wind and dead load combinations using the allowable stress design method per ASCE Standard 7 Section 2 4 Table K. Roof Diaphragm Calculations Table H provides roof diaphragm load calculations for determining diaphragm shear for seismic loads and comparing these loads with wind and minimum wind loads from Table H Shear wall and roof diaphragm deflections are calculated to confirm that the diaphragm is flexible as allowed by ASCE Standard 7 Section 12 3 1 1 Strength level seismic unit shear values are used to calculate deflections Calculations are based on American Plywood Association (APA) Report T2002 -17 Estimating Wood Structural Panel Diaphragm and Shear Wall Deflection April 17 2002 Uplift due to design base wind loads are calculated assuming that the roof experiences a maximum uplift pressure from wind zone E or Zone F Allowable roof dead loads plus truss connections exceed uplift by an acceptable margin PROJECT INFORMATION AND CRITERIA 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Printed 10/20/2008 A. Abrous, Ph D P E TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS THIS TABLE PROVIDES SUMMARY STRUCTURAL SPECIFICATIONS ADDITIONAL DETAILS FOR STANDARD SPECIFICATIONS AND CALCULATION OF ALLOWABLE LOADS ARE PROVIDED AT THE END OF THIS TABLE. EXPLANATION OF WALL LINES Shear walls and structural specifications are identified with Wall Lines on plan Sheet S2. Lettered Wall Lines are generally identified from the front to the rear of the building and Numbered Wall Lines start at the left and continue to the right (STANDARD PLAN) For reversed plans Lettered Wall Lines remain the same and the Numbered Wall Lines start at the right of the plan (REVERSED PLAN) The overhead garage door can be placed on Lines A, C or 3 On garage walls where the overhead garage door is not located a mandoor and 4 foot window can be added without requiring additional enaineerina. Revised 6/17/2008 4 to N HiLine Homes, Inc. Page 6 of 37 MAIN FLOOR PLAN 1768b NTS I A -i u miaow 34•-r MIER RrOOR Q er N STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Printed 10/20/2008 A. Abrous, Ph D P E HiLine Homes, Inc. TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS Maximum Applied Shear per Tables I or J (Ib) Wall length under maximum applied shear per Tables I or J (ft) Minimum number of anchor bolts when installed at 48 -in o c. minimum 2 anchors /mudsill Maximum anchor bolt Load 48 -in o c. minimum 2 anchors per mudsill (Ib) Allowable anchor bolt load for 1 /2 -in dia ASTM A307 bolts with 6 -in embedment 944 -lb Install 1 /2 -in dia. ASTM A307 anchor bolts and washer per code 48 -in o c., minimum 6 -in embedment in concrete and maximum 12 -in from end of mudsills with minimum 2 anchors per mudsill Revised 6/17/2008 STRUCTURAL SPECIFICATIONS LOWER LEVEL HOUSE Page 7 of 37 8,263 32 10 826 944 Wall Line B Maximum overturning tension due to wind load per Table I (Ib) I 2,041 Maximum overturning tension due to seismic load per Table J (Ib) 885 Allowable tension load for Simpson LTT2OB Tension Ties is 1 750 -lb I 1 750 Basic allowable shear for 8d nails 68 -lb per 2005 NDS Table 11R. Adjustment 1 6 for 10 minute wind /seismic loads per 2005 NDS Table 2 3.2. Allowable shear load is (1 6)(68) =109 lb per nail Allowable tension for 4 0 -ft long shearwall nailed to mudsill at 6 -in o c. is T 1 /2(Nnail)(FNail) 1/2(48/6 +1)(1 6)(68)= 490 -Ib Basic allowable static tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ stainless steel Anchor (KB -TZ) embedded a minimum of 2 -in into 3 000 -psi cracked concrete 1 617 -lb Adding the effect of mudsill nailing yields a total tension load of 1 617 +490 2 107 -lb Basic allowable seismic tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ Anchor (KB -TZ) embedded a minimum of 2 0 -in into 3 000 -psi cracked concrete 1 328 -lb Adding the effect of mudsill nailing yields a total tension of 1 328 +490 =1 818 -lb For each shearwall, install Simpson LTT2OB Tension Ties fastened to 3 -in framing with 10 -16d nails. Fasten LTT2OB to concrete with 1 /2 -in x 7 -in Hilti Kwik Bolt TZ stainless steel anchor and 2x2x3/16 -in flat washers Embed anchors minimum of 2 -in into minimum 6 -in concrete stem wall (Total of 2 Kwik Bolts and 2 LTT2OBs) 490 2,107 1 818 Wall Line D 4ft Shearwall Segment Maximum overturning tension due to wind load per Table I (Ib) 1 373 Maximum overturning tension d to seismic Fla per I able J (Ib) I 506 Allowable tension load for Simpson LTT2OB Tension Ties is 1,750 -lb I 1,750 Basic allowable static tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ stainless steel Anchor (KB -TZ) embedded a minimum of 2 -in into 3 000 -psi cracked concrete 1 617 -lb 1 617 STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Printed 10/20/2008 A. Abrous, Ph D P E. HiLine Homes, Inc. TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS Basic allowable seismic tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ Anchor (KB -TZ) 1 328 embedded a minimum of 2.0 -in into 3 000 -psi cracked concrete 1 328 -lb For the 4 -ft shearwall segment, install Simpson LTT2OB Tension Ties fastened to 3 -in framing with 10 -16d nails. Fasten LTT2OB to concrete with 1 /2 -in x 7 -in Hilti Kwik Bolt TZ stainless steel anchor and 2x2x3/16 -in flat washers. Embed anchors minimum of 2 -in into minimum 6 -in concrete stem wall (Total of 8 Kwik Bolts and 8 LTT2OBs) Wall Line D 6ft Shearwall Segment Maximum overturning tension due to wind load per Table I (Ib) Maximum overturning tension due to seismic load per Table J (Ib) Basic allowable shear for 8d nails 68 -lb per 2005 NDS Table 11R. Adjustment 1 6 for 10 minute wind /seismic loads per 2005 NDS Table 2 3.2 Allowable shear load is (1 6)(68) =109 lb per nail. Allowable tension for 6 0 -ft long shearwall nailed to mudsill at 4 -in o c. is T 1 /2(Nnail)(FNail) 1/2(72/4 +1)(1 6)(68) =1 034 -lb As shown on the plan, fasten OSB to mudsill with 8d nails at 4 -in o c. Wall Line 1 (5 ft Shear Wall Segment) Maximum overturning tension due to wind load per Table I (Ib) I 1. 640 Maximum overturning tension due to seismic load per I able J (Ib) I 449 Allowable tension load for Simpson LTT2OB Tension Ties is 1 750 -lb I 1 750 Basic allowable shear for 8d nails 68 -lb per 2005 NDS Table 11R. Adjustment 1 6 for 10 minute wind /seismic loads per 2005 NDS Table 2 3.2 Allowable shear load is (1 6)(68) =109 lb per nail Allowable tension for 5 0 -ft long shearwall nailed to mudsill at 6 -in o c. is T 1 /2(Nnail)(FNail) 1/2(60/6 +1)(1 6)(68)= 598 -lb Basic allowable static tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ stainless steel Anchor (KB -TZ) embedded a minimum of 2 -in into 3 000 -psi cracked concrete 1 617 -lb Adding the effect of mudsill nailing yields a total tension load of 1 617 +598 2,215 -lb Basic allowable seismic tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ Anchor (KB -TZ) embedded a minimum of 2 0 -in into 3 000 -psi cracked concrete 1 328 -lb Adding the effect of mudsill nailing yields a total tension of 1 328 +598 =1 926 -lb For each shearwall, install Simpson LTT2OB Tension Ties fastened to 3 -in framing with 10 -16d nails. Fasten LTT2OB to concrete with 1 /2 -in x 7 -in Hilti Kwik Bolt TZ stainless steel anchor and 2x2x3/16 -in flat washers Embed anchors minimum of 2 -in into minimum 6 -in concrete stem wall (Total of 2 Kwik Bolts and 2 LTT2OBs) UPPER LEVEL HOUSE Wall Line B (Upper Level) (Perforated Shear Wall) Maximum overturning tension due to wind load per Table I (Ib) 792 Maximum overturning tension uc�e to seismic of per I able J (Ib) 537 Maximum shear (V) on Wall Line B per Tables I or J (Ib) 2,836 Shear Wall Clear Height (ft) 8 Maximum. Opening Height (ft) 4 0, Revised 6/17/2008 STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Page 8 of 37 1,058, I 191 1 034 598 2,215 1 926 Printed 10/20/2008 A. Abrous, Ph D P E HiLine Homes, Inc. TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS Percentage of Full- Height sheathing Ratio of Maximum Opening Height to Wall Clear Height Shear Resistance Adjustment Factor (C per 2005 NDS Table 4 3 Sum of Perforated Shear Wall Segment Lengths (ft) Design Shear Capacity of Wall (Ib) CHECK IF SHEAR CAPACITY OF PERFORATED SHEAR WALL Hold -Down Tension Load T Vh /COFLi (Ib) At each end of the perforated shearwall attach main floor top with 1 /2 -in threaded rod, 2 -in washer, and nut. Revised 6/17/2008 OPTIONAL GARAGE SHEAR WALL SHEATHING SPECIFICATIONS STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Page 9 of 37 56 0 05 34 IS ADEQUATE plates to upper floor bottom plate 0 82 19 5,687 YES 1 456 Wall Lines A C (Standard /Optional Garage Door Locations) Maximum overturning tension due to wind load per Table 1(lb) I 2,245 Maximum overturning tension due to seismic load per Table J (Ib) I 801 Allowable load for Simpson STHD10 Strap Ties is 3 730 -lb I 3 730 Where shown on the plan and where the overhead garage door is located, install Simpson STHD10 Strap Tie Holdowns per standard specification (total of 4 STHD10s) Wall Line 3 (Optional Garage Door Location) Maximum overturning tension due to wind load per Table 1(lb) 1 341 Maximum overturning tension due to seismic load per Table J (Ib) 637 Allowable tension load for Simpson LTT2OB Tension Ties is 1 750 -lb 1 750 Basic allowable static tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ stainless steel Anchor (KB -TZ) embedded a minimum of 2 -in into 3 000 -psi cracked concrete 1 617 -lb Basic allowable seismic tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ Anchor (KB -TZ) embedded a minimum of 2 0 -in into 3 000 -psi cracked concrete 1 328 -lb 1 617 1 328 ALL WALL LINES (Except Garage /House Separation Wall) Maximum resistive unit wind shear load per Table I (lb /ft) J 342 Maximum resistive unit seismic shear load per Table J (Ib /ft) J 194 Basic allowable shear for wind loads 785 -lb /ft per NDS Table 4 3A for 8d nails 6 -in o.c. on edges, 12 -in o c. in the field framing 16 -in o c. per Note b Adjustments 0 50 365 for ASD and 0 93 for Hem -Fir framing Allowable shear (0 50)(0 93)(785) 365 -lb /ft. Basic allowable shear for seismic loads 560 -Ib /ft per NDS Table 4 3A for framing 16 -in o c. per Note b Adjustments are 0 50 for ASD and 0 93 for Hem -Fir framing Allowable shear (0 50)(0 93)(560) 260 -Ib /ft. 260 Printed 10/20/2008 A. Abrous, Ph D P E. HiLine Homes, Inc. Page 10 of 37 TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS Apply 7/16 -in OSB wood structural panels to 3 -in nominal Hem -Fir framing members with 8d nails staggered 6 -in o c. on panel edges, 12 -in o c. in the field, and all edges blocked with 3- in nominal framing per standard specification Wall Line 2 (Garage /House Separation Wall Interior GWB) Maximum resistive unit wind shear load per Table I (lb /ft) 285 Maximum resistive unit seismic shear load per Table J (lb /ft) I 149 Basic allowable unit shear for wind loads 320-1b/ft. Adjustment Factor (AF) for ASD is 320 0 50 Allowable shear (2)(0 50)(320) 320- lb /ft. Basic allowable unit shear for seismic loads with flat metal strap bracing 320 -lb /ft for framing 16 -in o c. Adjustment factors for ASD is 0 50 and seismic response 198 modification coefficient (R =4) GWB sheathing per IBC Table 1617 7 2 4/6 5 0 62 Allowable shear (2)(0 50)(0 62)(320) 198 -lb /ft. Fasten Simpson WB106 Wall Bracing to framing members per standard specification and maufacturer's instructions Fasten 1 /2 -in GWB drywall panels to both sides of Hem -Fir framing members per standard specification Revised 6/17/2008 SHEAR TRANSFER SPECIFICATIONS LOWER LEVEL HOUSE All Wall Lines Fasten double top plates together with 10d nails 12 -in o c. and 6 -in o c. at splices. Overlap splices 4 -ft. minimum Fasten OSB wall sheathing between shear wall segments at same fastener spacing as on shear walls. Fasten OSB panels to mudsills with minimum 8d nails 6 -in o c. Lap bottom of Upper Level OSB panels 3 /4 -in onto Main Level wall top plates and fasten with 8d nails 6 -in o c. per Floor -to -Floor Connection details 4 Sheet S5 UPPER LEVEL HOUSE and GARAGE All Wall Lines Fasten double top plates together with 10d nails 12 -in o c. and 6 -in o c. at splices. Overlap splices 4 -ft. minimum Fasten OSB wall sheathing between shear wall segments at same fastener spacing as on shear walls. Fasten OSB panels to mudsills with minimum 8d nails 6 -in o c. Wall Lines 1, 2 3 (Gables) Maximum applied unit wind shear load per Table I (lb /ft) 108 Maximum applied unit seismic shear load per Table J (lb/ft) 70 Allowable single shear load for 10d nails with nominal 2X side member 163 -Ib /nail Total allowable shear transfer load for 2 -10d common toenails 16 -in o c. 203 2(0 83)(12/16)(1 6)(122)= 203 -lb STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Printed 10/20/2008 A. Abrous, Ph D P E. TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS Fasten gable -end trusses to double top plates with 2 -10d toenails 16 -in o c. or 1 -10d nail 8- in o.c. Wall Lines A, B, C D (Eaves) Maximum resistive unit wind shear load per Table 1 (lb /ft) Maximum resistive unit seismic shear load per Table J (lb /ft) See Roof Framing Specification for truss connections and blocking Fasten per Roof Framing Specification for truss connections and blocking Roof Sheathing Maximum applied unit wind shear per Table I (lb /ft) I 258 Maximum applied unit seismic shear per Table J (lb /ft) I 135 Basic allowable unit shear for wind /seismic loads 645/460 -lb /ft per NDS Table 4.2B for 7/16 -in unblocked panel diaphragms Adjustment factor (AF) for ASD 0 5 Adjusted 323/230 allowable unit shear (0 50)(645/460) 323/230- lb /ft. Allowable snow (live) load for 7/16 -in APA Span Rated 24/16 with supports 24 -in o c per 40 APA Table 25 40 psf Allowable snow (live) load for 15/32 -in APA Span Rated 32/16 with supports 24 -in o c. per 75 APA Table 25 70 psf Up to 40 -psf ground snow load, install 7/16 -in unblocked APA Span Rated 24/16 panels to engineered trusses 24 -in o c. per IBC Case 1 Fasten with 8d nails 6 -in o c. on supported edges and 12 -in o c. in the field Install 1 /2 -in panel edge clips midway between each support. See truss blocking and boundary nailing for additional requirements. Beyond 40 -psf ground snow load, use 15/32 -in panels instead Beyond 70 -psf snow load, use 19/32 -in sheathing Truss Blocking Boundary Nailing Fasten 2X4 vent blocking in each truss bay with 1 -10d toenail into truss, each side Fasten roof diaphragm to blocking with 8d nails 6 -in o c. Maximum applied unit shear per Tables G C1/ (lb /ft). I 165 Allowable load for 2 -10d common toenails (2)(0 83)(1 6)(102) 271 -lb per truss end Allowable load for H2.5A Seismic HurricaneTies 110 -lb per truss end for Hem -Fir Total 381 allowable load per truss end 271 110 381 -lb per truss end 381 -lb /ft. Fasten truss tails to top plates with 2 10 toenails and a Simpson Seismic Hurricane Tie fastened to truss and top plates per manufactures instructions. (see sheet S3, Roof Framing Plan) Truss Connections (Uplift Loads) Maximum net uplift on truss °connection per Table K (lb) Allowable uplift for H10A Seismic Hurricane Ties 1 015 -lb for Hem -Fir framing Revised 6/17/2008 HiLine Homes, Inc. Page 11 of 37 Truss Connections (Lateral Loads) STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 89 103 -731' 1,015 Printed 10/20/2008 A. Abrous, Ph D P E. HiLine Homes, Inc. TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS Truss Chord Splice Nailing Maximum applied chord tension load per Table K, C T M/b v /b8 (Ib). I 629 Allowable chord splice tension load for 10d nails 6 -in o c. I 1 306 Fasten exterior wall top plate splices together with 10d nails 6 -in o c. Minimum splice length 48 -in Revised 6/17/2008 STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Page 12 of 37 Printed 10/20/2008 A. Abrous, Ph D P E. HiLine Homes, Inc. TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS STANDARD SPECIFICATIONS ALLOWABLE LOADS Basic allowable single shear for fastening 1 5 -in Hem -Fir framing to concrete with 1 /2 -in dia. ASTM A307 bolts with minimum 6 -in embedment 590 -lb per 2005 NDS Table 11E. Adjustment for 10- minute wind /seismic loads 1 6 per 2005 NDS Table 2 3.2. Allowable shear load (1 6)(590) 944 -lb Basic allowable single shear for fastening Hem -Fir framing to concrete with 1 /2 -inX8 5 -in long Simpson Wedge -All wedge anchors in minimum 2 500 -psi concrete with 4 5 -in embedment 1 763 -lb Adjustments for no special inspection 0 50 for 3 -in edge distance 0 53 and for wind /seismic loads 1 33 Allowable load (0.50)(0.53)(1.33)(1,763) 621 Basic allowable single shear for fastening Hem -Fir framing to concrete with 1 /2 -in Simpson Titen HD anchors in minimum 2,500 -psi concrete with 4.25 -in embedment 2,673 -lb Adjustments for 3 -in edge distance 0 43 and for 10- minute wind /seismic loads 1 33 Allowable load (0.43)(1.33)(2,673) 1,529 -lb. Revised 6/17/2008 r HOLD -DOWNS Hilti Kwik Bolt TZ Carbon Steel STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Page 13 of 37 944 621 1 529 Simpson STHD8 /10 Strap Ties Install Simpson STHD8 Strap Tie Holdowns in minimum 2 500 -psi concrete and 6 -in minimum stem wall Fasten STHD8s to 3 -in framing members with 24 -16d sinkers Allowable tension load for Simpson STHD8 Strap Ties is 2 370 -lb for minimum 2 500 -psi 2,370 concrete Install Simpson STHD10 Strap Tie Holdowns in minimum 2 500 -psi concrete and 6 -in minimum stem wall Fasten STHD1Os to 3 -in framing members with 28 -16d sinkers Allowable tension load for Simpson STHD10 Strap Ties is 3 730 -lb for 2 500 -psi concrete I 3 730 SimpsonTiten HD or Wedge All Anchor With Simpson LTT2OB Install Simpson LTT2OB Tension Ties fastened to 3 -in framing with 10 -16d nails Fasten LTT2OB to concrete with 1 /2 -in x 8 -in Simpson Titen HD anchors and 2x2x3/16 -in flat washers Embed anchors 4 125 -in into minimum 6 -in concrete stem wall Allowable tension load for Simpson LTT2OB Tension Ties is 1 750 -lb I 1 750 Basic allowable tension load for 1 /2 -in x 8 -in long Simpson Titen HD anchors embedded 3 9- in to concrete 2 186 -lb Adjustments are 0 50 for no special inspection, 0 80 for 2 75 -in edge distance and 1 33 for wind /seismic loads Allowable load 1 163 (0 5)(0.80)(1.33)(2,186) 1,163 -lb. Basic allowable tension load for 1 /2 -in x 8 -in long SimpsonWedge All anchors embedded 4 5 in into 2,500 -psi concrete 2,045 -lb Adjustments are 0 50 for no special inspection, 0 80 1 088 for 2.75 -in edge distance and 1 33 for wind /seismic loads. Allowable load (0.5)(0.80)(1.33)(2,045)=1,088-lb. Printed 10/20/2008 A. Abrous, Ph D P E. HiLine Homes, Inc. Revised 6/17/2008 STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Page 14 of 37 TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS Install Simpson LTT2OB Tension Ties fastened to 3 -in framing with 10 -16d nails Fasten LTT2OB to concrete with 1 /2 -in x 7 -in Hilti Kwik Bolt TZ stainless steel anchor and 2x2x3/16 -in flat washers. Embed anchors minimum of 2 -in into minimum 6 -in concrete stem wall Basic allowable static tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ stainless steel Anchor (KB -TZ) embedded a minimum of 2 -in into 3 000 -psi cracked concrete 1 617 -lb Basic allowable seismic tension load for 1 /2 -in x 7 -in long Hilti Kwik Bolt TZ Anchor (KB -TZ) embedded a minimum of 2 0 -in into 3 000 -psi cracked concrete 1 328 -lb Shear Wall Nailing Into Mudsill Fasten OSB panels to mudsill with 8d nails 6 -in o.c Basic allowable single shear load for 8d nails and Hem -Fir framing 68 -lb per NDS Table 110 Adjustment for 10- minute wind /seismic loads 1 6 per NDS Table 2.3.2 Allowable shear load (1 6)(68) 109 -Ib /nail Allowable shear wall overturning load for 4 -ft panels fastened with one row of 8d nails 6 -in o c. (1/2)(48/6 1)(68)(1 6) 490 -lb Fasten OSB panels to mudsill with 8d nails 6 4 -in o.c. Basic allowable single shear load for 8d nails and Hem -Fir framing 68 -lb per NDS Table 11Q Adjustment for 10- minute wind /seismic loads 1 6 per NDS Table 2.3.2 Allowable shear load (1 6)(68) 109 -Ib /nail Allowable shear wall overturning load for 4 -ft panels fastened with one row of 8d nails 4 -in o c. (1/2)(48/4 1)(68)(1 6) 707 -lb Fasten OSB panels to mudsill with 8d nails (a. 3 -in o.c Basic allowable single shear load for 8d nails and Hem -Fir framing 68 -lb per NDS Table 110 Adjustment for 10- minute wind /seismic loads 1 6 per NDS Table 2 3.2 Allowable shear load (1 6)(68) 109-lb/nail Allowable shear wall overturning load for 4 -ft panels fastened with one row of 8d nails 3 -in o c (1/2)(48/3+ 1)(68)(1 6) 925 -lb Nails (Per 2005 NDS Tables 11N and 2.3.2) Single shear for 8d common (0 131 -in) with 1 5 -in thickness Hem -Fir side members Basic allowable shear for 8d common nails 84 -lb Adjustment for 10- minute wind /seismic loads 1 6 Allowable shear load (1 6)(84) 134 -lb Single shear forlOd common (0 148 -in) with 1 5 -in thickness Hem -Fir side members. Basic allowable shear for 10d common nails 102 -lb Adjustment for 10- minute wind /seismic loads 1 6 Allowable shear load (1 6)(102) 163 -lb Single shear for 10d common toenails (0 148 -in) with 1 5 -in thickness Hem -Fir side members (0 83)(163) 135 -lb 1 617 1 328 490 707 925 134 163 135 OSB Shear Wall Panels Per 2005 NDS Table 4 3A) Basic allowable shear for wind loads 785 -lb /ft per NDS Table 4 3A for 8d nails 6 -in o.c. on edges, 12 -in o c. in the field framing 16 -in o c. per Note b Adjustments 0 50 365 for ASD and 0 93 for Hem -Fir framing Allowable shear (0 50)(0 93)(785) 365 -lb /ft. Basic allowable shear for wind loads 1,205 -lb /ft per NDS Table 4 3A for 8d nails staggered 4 -in o.c. on edges, 12 -in o c. in the field framing 16 -in o c. per Note b 560 Framing on panel edges is 3 -in nominal Adjustments are 0 50 for ASD and 0 93 for Hem Fir framing Allowable shear (0 50)(0 93)(1,205) 560 -lb /ft. Printed 10/20/2008 A. Abrous, Ph D P E HiLine Homes, Inc. Revised 6/17/2008 SHEAR TRANSFER SPECIFICATIONS Nails STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Page 15 of 37 TABLE A. STRUCTURAL SPECIFICATIONS AND ALLOWABLE LOADS Basic allowable shear for seismic loads 560 -lb /ft per NDS Table 4 3A for framing 16 -in o c. per Note b Adjustments are 0 50 for ASD and 0 93 for Hem -Fir framing Allowable shear (0 50)(0 93)(560) 260- lb /ft. Basic allowable shear for seismic loads 860 -lb /ft per NDS Table 4 3A for 8d nails staggered 4 -in o.c. on edges, 12 -in o c. in the field framing 16 -in o c. per Note b Framing on panel edges is 3 -in nominal Adjustments are 0 50 for ASD 0 93 for Hem -Fir framing Allowable shear (0 50)(0 93)(860) 400- lb /ft. GWB Shear Wall Panels Per 2005 NDS Table 4.3B) Fasten 1 /2 -in GWB panels to both sides of wall with No 6 X 1.25 -in long Type S or W drywall screws 4 -in o c. on edges and in the field with all edges blocked Minimum framing material is Hem -Fir with maximum spacing of studs 16 -in o c. Basic allowable unit shear for wind loads 320-1b/ft. Adjustment Factor (AF) for ASD is 0 50 Allowable shear (2)(0 50)(320) 320 -1b /ft. Basic allowable unit shear for seismic loads without flat metal strap bracing 320 -lb /ft for framing 16 -in o c. Adjustment factors for ASD is 0 50 and seismic response modification coefficient (R =2) GWB sheathing per IBC Table 1617 7 2 2/6 5 0 30 Allowable shear (2)(0 50)(0 30)(320) 96- lb /ft. Basic allowable unit shear for seismic loads with flat metal strap bracing 320 -Ib /ft for framing 16 -in o c. Adjustment factors for ASD is 0 50 and seismic response modification coefficient (R =4) GWB sheathing per IBC Table 1617 7.2 4/6 5 0 62. Allowable shear (2)(0 50)(0 62)(320) 198- lb /ft. 260 400 320 96 198 Basic allowable load for 10d common nails fastened with 1 5 -in side members 102 -lb per NDS Table 11N Adjustment for 10- minute wind /seismic loads 1 6 Allowable load 163 (1 6)(102) 163 -lb Basic allowable load for 8d common nails fastened to minimum 3 /4 -in side members 73 -lb per NDS Table 11N Adjustment for 10- minute wind /seismic loads 1 6 Allowable load 117 (1 6)(73) 117 -lb Toenails Allowable load for 10d common toenails 12 -in o c. (0 83)(1 6)(102) 135- lb /ft. I 135 Allowable load for 2 -10d common toenails 16 -in o c. (0 83)(2)(12/16)(1 6)(102) 203- 203 lb /ft. Ladder Blocking Place 2X framing members laid flat on wall perpendicular to truss bottom chords at approximately equal spacing Fasten blocking to top plate with 4 -10d nails Fasten each end of blocking to truss bottom chord with 2 -10d nails Allowable shear load per ladder block (4)(0 93)(1 6)(102) 607 -lb I 607 Printed 10/20/2008 A. Abrous, Ph.D P.E. Description BUILDING DIMENSIONS Transverse Width of Building (ft) -1 FL Longitudinal Length of Building (ft) 1s Fl. Roof Slope (6/12) Length of Gable -End Roof Overhang (ft) Length of Eave -End Roof Overhang (ft) Maximum Truss Span (Eave -Eave) (ft) MAIN FLOOR DIMENSIONS Wall Height (ft) Transverse Exterior Walls Length (ft) Longitudinal Exterior Walls Length (ft) Transverse Partitions Length (ft) Longitudinal Partitions Length (ft) UPPER FLOOR DIMENSIONS Wall Height (ft) Transverse Exterior Walls Length (ft) Longitudinal Exterior Walls Length (ft) Transverse Partitions Length (ft) Longitudinal Partitions Length (ft) OPTIONAL GARAGE DATA Transverse Width (ft) Longitudinal Length (ft) Transverse Exterior Walls Length (ft) Longitudinal Exterior Walls Length (ft) Maximum Truss Span (Eave -Eave) (ft) Maximum Ground Snow Load, p (psf) Exposure Factor, Ce Thermal Factor C Snow Importance Factor, Slope Factor C Flat Roof Snow Load, pf (psf) Sloped Roof Snow Load, ps (psf) Revised 9/3/2008 HiLine Homes, Inc. Page 16 of 37 TABLE B BUILDING DATA Value 26.0 34.0 05 10 13 26 0 7.8 52 0 68 0 38 0 29 0 8.8 52 0 68 0 60 0 30 0 24 0 22.0 48 0 44 0 24 0 Description BUILDING INERTIAL DATA Roof Diaphragm Dead Load (psf) Exterior Walls Dead Load (psf) Partition Walls Dead Load (psf) Transverse Width of Building (ft) 2 Fl. Longitudinal Length of Building (ft) 2n Fl Least horizontal Building Dimension b (ft) 0 4 Mean Building Height (ft) 0 1 *b (ft) End Zone Dimension, a (ft) Adjusted End Zone Dimension a (ft) Length of End Zone, 2a (ft) BUILDING DATA 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Value 15 15 10 26.0 34.0 MEAN AND MAXIMUM BUILDING HEIGHTS Roof Height (ft) 16 6 Mean Height (ft) 19 9 Maximum Height (ft) 23 1 CALCULATION OF LENGTH OF END ZONE, 2a 26 0 7 94 2.6 2.6 30 60 BUILDING /GARAGE ENCLOSED AREAS Building Enclosed Area (sf) Main Floor 884 0 Building Enclosed Area (sf) Second Floor 884 0 Optional Garage Enclosed Area (sf) 528 0 SNOW DATA Assumed I 30.0 IASCE 7 -05 Table 7 -2, for Exposure C I 1 0 IASCE 7 -05 Table 7 -3, for Residences I 1 0 IASCE 7 -05 Table 7 -4, for Category II 1 0 IASCE 7 -05 Figure 7 -2a I 1 0 IASCE 7 -05 Equation 7 -1 p 0 7 C C I F 21 0 1Sooped Roof Snow Load C pf) I 21 0 Note Width is measured perpendicular to the wind direction and length parallel to the wind direction Printed 10/20/2008 A. Abrous, Ph.D., P.E Description Wind Input Data Basic Wind Speed V3s (mph) Wind Exposure Category Simplified Method per ASCE 7 6 4 Importance Factor IW Exposure Height Factor, A (1st Floor) Topographical Factor, Kzt Exposure Height Factor, A (2nd Floor) Design Wind Pressures (psf) A End Zone of Wall B End Zone of Roof C Interior Zone of Wall D Interior Zone of Roof E End Zone of Windward Roof F End Zone of Leeward Roof G Interior Zone of Windward Roof H Interior Zone of Leeward Roof Eo End Zone of Windward OVHG Roof Go Interior Zone of Windward OVHG Roof GARAGE TRANSVERSE Garage Zone Data Horizontal Wind Force Loading Transverse Zones A and B Width (ft) Transverse Zones C and D Width (ft) Transverse Zones A C Height (ft) Transverse Zones B D Height (ft) Vertical Wind Force Loading Transverse Roof Zones E F Width (ft) Transverse Roof Zones G H Width (ft) Transverse Roof Zones E F Length (ft) Transverse Roof Zones G H Length (ft) LONGITUDINAL Garage Zone Data Horizontal Wind Force Loading Transverse Zones A Width (ft) Transverse Zones C Width (ft) Transverse Zones A Height (ft) Transverse Zones C Height (ft) Vertical Wind Force Loading Transverse Roof Zones E F Width (ft) Transverse Roof Zones G H Width (ft) Transverse Roof Zones E F Length (ft) Transverse Roof Zones G H Length (ft) HiLine Homes, Inc. Page 17 of 37 TABLE C WIND DESIGN CRITERIA Valued Description MAIN FLOOR 1201 TRANSVERSE Building Zone Data CI Horizontal Wind Force Loading YesITransverse Zones A B Width (ft) 1 00ITransverse Zones C D Width (ft) 1.21 Transverse Zones A C Height (ft) 1 00ITransverse Zones B D Height (ft) 1.29 LONGITUDINAL Building Zone Data Horizontal Windforce Loading Longitudinal Zone A Width (ft) Longitudinal Zone C Width (ft) Longitudinal Zone A Height (ft) Longitudinal Zone C Height (ft) 28 6 46 20 7 47 -12.7 -17 3 -9.2 -139 -23 7 -20.2 60 160 78 60 60 160 120 120 60 180 93 11 3 60 180 11 0 11 0 UPPER FLOOR TRANSVERSE Building Zone Data Horizontal Wind Force Loading Transverse Zones A B Width (ft) Transverse Zones C D Width (ft) Transverse Zones A C Height (ft) Transverse Zones B D Height (ft) Vertical Windforce Loading Transverse Roof Zones E F Width (ft) Transverse Roof Zones G H Width (ft) Transverse Roof Zones E F Len th ft Transverse Roof Zones G H Length (ft) LONGITUDINAL Building Zone Data Horizontal Windforce Loading Longitudinal Zone A Width (ft) Longitudinal Zone C Width (ft) Longitudinal Zone A Height (ft) Longitudinal Zone C Height (ft) Vertical Windforce Loading Longitudinal Roof Zones E F Width (ft) Longitudinal Roof Zones G H Width (ft) Longitudinal Roof Zones E G Length (ft) Longitudinal Roof Zones F H Length (ft) Value 60 28 0 78 0.0 60 20 0 7.8 7.8 60 28 0 8.8 65 60 28 0 130 130 60 20 0 103 12.6 60 20 0 170 170 Note Width is measured perpendicular to the wind direction and length parallel to the wind direction Revised 9/3/2008 WIND DESIGN CRITERIA Printed 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 10/20/2008 A. Abrous, Ph.D., P E Description SEISMIC GROUND MOTION VALUES AND SITE SPECIFICATIONS Building Occupancy Category Seismic Importance Factor IE Default Seismic Site Classification Seismic Design. Category Response Modification Coefficient, R Building Period Parameter C Redundancy Factor p Site Short Period Design Acceleration, SDS (g) Mapped MCE Long Period Acceleration, S (g) Ground Snow Load (psf) Flat Roof Snow Load (psf) Mean Building Height, h (ft) Building Period T Cth314 (sec) Site Long Design Period Acceleration SDI (g) T 0.2 *S /S (sec) T SD1 /SDs (sec) Is Period T T T Is Design Spectral Response S SDs? Use of Equivalent Lateral Force Procedure? Revised 9/3/2008 HiLine Homes, Inc. Page 18 of 37 TABLE D SEISMIC DESIGN CRITERIA Reference /Calculation ASCE Standard 7, Table 1 -1 ASCE Standard 7, Table 11 5 -1 ASCE Standard 7 Table 20.3 -1 IRC Table R301.2.2.1 1 ASCE Standard 7 Table 12.2-1 ASCE Standard 7 Table 12.8 -2 ASCE Standard 7 Section 12.3 4.2 IRC Table, R301.2.2.1 1 for SDC D2 ASCE Standard 7 Figure 22 -2 Building Department Calculation, Table B COMPUTATION OF DESIGN RESPONSE SPECTRUM DATA 'Per Plan (Calculated in Table B) IASCE Standard 7, Section 12 8 2 1 IASCE Standard 7 11 4 4 SDI 2/3SM1 IASCE Standard 7 Section 11 4 5 IASCE Standard 7 Section 11 4 5 Value I II 10, I D D2 6.5 0 02 I.1 000 I 1 170 I 0.600 I 30.0 I 21.0 I 199 1 0188 I 0 400 I 0 068 1 0.342 CHECK FOR VALIDITY OF USE OF "EQUIVALENT LATERAL FORCE PROCEDURE" IASCE Standard 7 Section 11 4 5 IASCE Standard 7 Section 11 4 5 IASCE Standard 7, Section 12.8 COMPUTATION OF SEISMIC DESIGN COEFFICIENT Seismic Design Coefficient: Cs SDS *IE /R IASCE Standard 7 Section 12 8 1 1 SEISMIC DESIGN CRITERIA 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 I Yes I Yes I. Yes I 0 180 Printed 10/20/2008 A. Abrous, Ph.D., P E. Zone Transverse Wall Zone A Transverse Roof Zone B Transverse Wall Zone C Transverse Roof Zone D Transverse Wall Zone A Transverse Wall Zone C Transverse Roof Zone E Transverse Roof Zone F Transverse Roof Zone G Transverse Roof Zone H Roof Overhang Zone E Roof Overhang Zone F 1 Roof Overhang Zone G Roof Overhang Zone H Longitudinal Roof Zone E Longitudinal Roof Zone F Longitudinal Roof Zone G) Longitudinal Roof Zone H Revised 9/3/2008 TABLE E- Wind Pressure (psf) 1 WIND LOADS (HOUSE) HiLine Homes, Inc. Page 19 of 37 TRANSVERSE HOUSE WIND LOADING UPPER LEVEL Horizontal Wind Loads 28 61 601 881 528 4 61 6 01 6 51 39 0 20 71 28 01 881 2464 471 2801 651 182.0 UPPER LEVEL Lateral Force /Moment MAIN LEVEL Horizontal Wind Loads 28.61 6.01 7.81 46.8 20 71 28.01 7.81 218.4 MAIN LEVEL Lateral Force /Moment TOTAL TRANSVERSE LATERAL FORCE /MOMENT Vertical Wind Loads -12 7 -17 3 -9 2 13 9 -23 7 -17 3 20 2 -13 9 -12.71 17 31 -9.21 -13 91 Zone Zone Width Ht. /Leng (ft) (ft) 60 60 28 0 28 0 60 60 28 0 28 0 Uplift Force and Overturning Moment on Building Total Overturning Moment Due to Transverse Wind Loading Unit Uplift on Building (psf) LONGITUDINAL HOUSE WIND LOADING UPPER LEVEL Horizontal Wind Loads Longitudinal Wall Zone Al 28 61 6 0 10 31 61 81 Longitudinal Wall Zone C 20 71 20 0 12 61 251 51 UPPER LEVEL Lateral Force /Moment MAIN LEVEL Horizontal Wind Forces Longitudinal Wall Zone AI 28.61 6.01 7.81 46.81 Longitudinal Wall Zone CI 20 71 20 01 7.81 1561 MAIN Lateral Force /Moment Total Lateral Force /Moment Vertical Wind Loads 601 601 20 01 20 01 130 130 130 130 13 13 13 13 01 01 1701 01 Zone Area (sf) 78 0 78 0 364 0 364 0 80 80 37.2 37.2 102.01 102.01 340 01 340 01 Zone Force (lb) (ft) 1 948 231 6 580 1 103 5,599 1,620 5,470 7,809 13,407 WIND LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 -1,278 19 5 1 741 6 5 -4 320 19 5 -6 527 6 5 -244 26 7 178 -0 7 970 26 7 -668 -0 7 15,926 -18.0 2,2801 6 7161 5,672 1,6201 5,0401 6,6541 12,3261 1,6711 -2,2761 -4 0351 -6 0971 Moment Moment Arm (ft-lb) 12.2 16.6 12.2 16.6 39 39 391 391 2551 851 25 51 851 23 766 3 842 80,271 18 318 126,196 6,316 21,334 27,650 153,847 24 919 11 315 84,239 42 425 6 506 -118 25 876 -444 194,716 320,912 29 527 94 609 124,136 6,316 19,658 25,974 150,110 42,612 19 349 102,896 51 821 Printed 10/20/2008 A. Abrous, Ph D., P E Roof Overhang Zone E Roof Overhang Zone F 1 Roof Overhang Zone G Roof Overhang Zone H Revised 9/3/2008 -23 71 -17 31 -20.21 -13 91 HiLine Homes, Inc. Page 20 of 37 601 601 20 01 20 01 1 01 101 1 0 1 01 60 60 20 0 20 0 Uplift Force and Overturning Moment on Building Total Overturning Moment Due to Longitudinal Wind Loads Unit Uplift on Building (psf) Note Plus and minus signs signify wind pressures acting toward and away from ASCE Standard 7 -183 -134 521 359 15,276 -17.3 the surfaces, WIND LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 34 5 6 329 05 67 34 51 17 980 0 51 -179 I 240,873 I 365,009 respectively per Printed 10/20/2008 A. Abrous, Ph.D., P E. Transverse Transverse Transverse Transverse Zone Wall Zone A Roof Zone B Wall Zone C Roof Zone D Transverse Roof Zone E Transverse Roof Zone F Transverse Roof Zone G Transverse Roof Zone H Roof Overhang Zone E Roof Overhang Zone F Roof Overhang Zone G Roof Overhang Zone H Transverse Wall Zone A Transverse Wall Zone C Transverse Roof Zone E Transverse Roof Zone F Transverse Roof Zone G Transverse Roof Zone H Roof Overhang Zone E Roof Overhang Zone F Roof Overhang Zone G Roof Overhang Zone H Revised 9/3/2008 HiLine Homes, Inc. Page 21 of 37 TABLE E -2 WIND LOADS (GARAGE) Wind Zone Zone Pressure Width Ht. /Leng. (psf) (ft) (ft) TRANSVERSE WIND LOADING Horizontal Wind Loads 28 61 601 781 468 461 60 601 360 20 71 160 781 1248 471 16 01 601 960 Lateral Force /Moment Vertical Wind Loads -12 7 17 3 -9.2 13 9 -23 7 -17 3 -20 2 -13 9 60 60 160 160 60 60 160 160 72.0 72.0 192.0 192.0 80 80 21 3 21 3 Zone Area (sf) Uplift Force and Overturning Moment on Building Total Overturning Moment Due to Transverse Wind Loading Unit Uplift on Building (psf) 120 120 12.0 12.0 13 13 13 13 LONGITUDINAL WIND LOADING Horizontal Wind Loads 2861 601 931 558 20 71 18 01 11 31 203 4 Lateral Force /Moment Vertical Wind Loads -127 60 173 60 -92 180 13 9 18 0 237 60 -173 60 20.2 18 0 -13 9 18 0 11 0 66 0 11 0 66 0 11 0 1980 11 0 198.0 10 60 10 60 1 0 180 1 0 180 Uplift Force and Overturning Moment on Building Total Overturning Moment Due to Transverse Wind Loading Unit Uplift on Building (psf) Zone Force (lb) 1 620 200 3 126 546 3,119 -1 106 -1 507 2,137 -3,229 -229 167 520 -358 -9,254 -17.5 1 931 5 095 3,897 -1 014 -1 382 -2,204 -3 330 -172 126 -440 303 8,970 -17.0 WIND LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Moment Arm (ft) Moment (ft-lb) 3.91 6 316 7.81 1 563 3.91 12 191 7.81 4,258 24,329 18 0 19 916 6 01 9 043 18 0 38 472 60 19375 247 5644 -0 7 -111 247 12829 -0 7 -238 104,931 129,259 4.7 8 979 5.7 28 784 37,763 16 5 16 735 5 5 7 599 16 5 36 368 5 5 18 316 22 5 3 871 -0 5 -63 22.5 9 899 -0 5 -151 92,574 130,337 Printed 10/20/2008 A. Abrous, Ph D., P E Zone Transverse Wall Zone A Transverse Roof Zone B Transverse Wall Zone C Transverse Roof Zone D Transverse Wall Zone A Transverse Wall Zone C Transverse Roof Zone E Transverse Roof Zone F Transverse Roof Zone G Transverse Roof Zone H Roof Overhang Zone E Roof Overhang Zone F Roof Overhang Zone G Roof Overhang Zone H Longitudinal Wall Zone A Longitudinal Wall Zone C Longitudinal Wall Zone A Longitudinal Wall Zone C Longitudinal Roof Zone EI Longitudinal Roof Zone F Longitudinal Roof Zone GI Longitudinal Roof Zone H Revised 9/3/2008 HiLine Homes, Inc. TABLE F -1 MINIMUM WIND LOADS (HOUSE) Zone Area Wind Zone Zone Pressure Width Ht. /Leng. 100! l 01 10 0l UPPER LEVEL Lateral Force /Moment MAIN LEVEL Horizontal Wind Loads 10.01 6.01 7.81 46.8 10.01 28.01 7.81 218.4 MAIN LEVEL Lateral Force /Moment TOTAL TRANSVERSE LATERAL FORCE /MOMENT Vertical Wind Loads 78 0 78 0 364 0 364 0 80 80 37.21 37.21 Uplift Force and Overturning Moment on Building' Total Overturning Moment Due to Transverse Wind Loading Unit Uplift on Building (psf)I 00 00 00 00 00 00 00 00 6 0 601 28 01 28 01 60 60 28 0 28 0 60 60 28 0 28 0 8 8 651 881 6 51 130 130 130 130 13 13 13 13 52.8 39 0 246 4 182 0 Zone Force (psf) (ft) (ft) (sf) (lb) TRANSVERSE HOUSE WIND LOADING UPPER LEVEL Horizontal Wind Loads 528 390 2 464 1 820 3,706 468 2,184 2,822 6,528 0 0 0 0 0 0 0 0 0 0.0 LONGITUDINAL HOUSE WIND LOADING UPPER LEVEL Horizontal Wind Loads 100 601 1031 618 100 20 01 1261 51 UPPER LEVEL Lateral Force /Moment MAIN LEVEL Horizontal Wind Forces 10.01 6.0 7.81 46.81 4681 10.01 20.0 7.81 1561 1,5601 MAIN Lateral Force /Moment 2,1581 Total Lateral Force /Moment 4,1471 Vertical Wind Loads 0 01 601 17 01 102.01 01 001 601 17 01 102.01 01 001 200 17 01 34001 01 001 200 17 01 340 0 1 01 MINIMUM WIND LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 6181 2,5151 1,989 Moment Arm (ft) Page 22 of 37 12.2 16.6 12.2 16.6 39 39 195 65 195 65 26 7 -0 7 26 7 -0 7 13 01 1411 1 391 391 1 1 2551 851 25 51 8.51 Moment (ft-lb) 6 442 6,474 30 061 30,212 73,188 1,825 8,518 10,343 83,531 0 0 0 0 0 0 0 0 0 73,188 8 003 35 430 43,433 1,825 6,084 7,909 51,342 0 0 0 0 Printed 10/20/2008 A. Abrous, Ph.D P E HiLine Homes, Inc. Page 23 of 37 Roof Overhang Zone E I 0 01 6 01 1 01 6 0 0 Roof Overhang Zone F I 0 01 6 01 1 01 6 0 0 Roof Overhang Zone G I 0 01 20 of 1 01 20 0 0 Roof Overhang Zone H I 0 01 20 01 1 01 20 0 0 Uplift Force and Overturning Moment on Building 0 Total Overturning Moment Due to Longitudinal Wind Loads Unit Uplift on Building (psf) 0.0 Note Plus and minus signs signify wind pressures acting toward and away from the surfaces, ASCE Standard 7 Revised 9/3/2008 MINIMUM WIND LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 34 5 0 -0 5 0 34 5 0 -0 5 0 0 43,433 respectively per Printed 10/20/2008 A. Abrous, Ph.D., P E. Transverse Wall Zone A Transverse Roof Zone B Transverse Wall Zone C Transverse Roof Zone D Transverse Roof Zone E Transverse Roof Zone F Transverse Roof Zone G Transverse Roof Zone H Roof Overhang Zone E Roof Overhang Zone F Roof Overhang Zone G Roof Overhang Zone H Transverse Wall Zone A Transverse Wall Zone C Transverse Roof Zone E 0 0 Transverse Roof Zone F 0 0 Transverse Roof Zone G 0 0 Transverse Roof Zone H 0 0 Roof Overhang Zone E 0 0 Roof Overhang Zone. 0 0 Roof Overhang Zone G 0 0 Roof Overhang Zone H 0 0 Revised 9/3/2008 Zone Zone Area (sf) TABLE F -2 MINIMUM WIND LOADS (GARAGE) Wind Zone Zone Pressure Width Ht. /Leng (psf) (ft) (ft) TRANSVERSE WIND LOADING Horizontal Wind Loads 10 01 601 781 468 1001 601 601 360 1001 16 01 781 1248 1001 16 01 601 960 Lateral Force /Moment Vertical Wind Loads 00 601 12.01 72.0 00 601 12.01 720 00 16 01 12.01 1920 0 0 16 01 12.01 192.0 00 60 1 31 80 00 60 131 80 00 1601 131 213 00 1601 131 213 Uplift Force and Overturning Moment on Building Total Overturning Moment Due to Transverse Wind Loading Unit Uplift on Building (psf) HiLine Homes, Inc. Page 24 of 37 LONGITUDINAL WIND LOADING Horizontal, Wind Loads 1001 601 931 558 10 01 1801 1131 2034 Lateral Force /Moment Vertical Wind Loads 60 60 180 180 60 60 180 180 11 0 11 0 11 0 11 0 10 10 10 10 66 0 66 0 198 0 198 0 60 60 180 180 Uplift Force and Overturning Moment on Building Total Overturning Moment Due to Transverse Wind Loading Unit Uplift on Building (psf) Zone Force (lb) 468 360 1,248 960 2,178 0 0 0 0 0 0 0 0 0 0.0 558 2,034 1,494 0 0 0 0 0 0 0 0 0 0.0 MINIMUM WIND LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Moment Arm (ft) 3.9 7.8 3.9 7.8 180 60 180 60 24 7 -0 7 24 7 -0 7 47 57 165 55 165 55 22.5 -0 5 22 5 -0 5 Moment (ft-lb) 1 825 2 808 4 867 7 488 16,988 0 0 0 0 0 0 0 0 0 16,988 2,595 11 492 14,087 0 0 0 0 0 0 0 0 0 14,087 Printed 10/20/2008 A. Abrous, Ph.D., P.E. Building Component Upper level Roof Diaphragm Ceiling 20% of Flat Roof Snow Load 30 -psf Transverse Exterior Walls Longitudinal Exterior Walls Transverse Partitions Longitudinal Partitions Second Level Floor Diaphragm Transverse Exterior Walls Longitudinal Exterior Walls Transverse Partitions Longitudinal Partitions Revised 9/3/2008 Story Roof R 2nd Floor 1st Floor SUM HiLine Homes, Inc. Page 25 of 37 TABLE G -1 SEISMIC LOADS (HOUSE) SEISMIC SHEAR LOADS Load Height/ (psf) Width Length (ft) (ft) UPPER LEVEL SEISMIC LOADS 15.0 00 150 150 100 100 88 88 88 88 VERTICAL DISTRIBUTION OF SEISMIC FORCES I wx I 125,1401 1 30,353 1 0 1 1 55,493 52.0 68 0 60 0 30 0 Area (sf) 884 0 884 0 457 6 598 4 528 0 264 0 Total Dead Load for Restoring Moment Roof Diaphragm Tributary Dead Load MAIN LEVEL SEISMIC WEIGHTS 1001 I I 884 150 781 5201 4056 150 781 6801 5304 100 781 3801 2964 1001 781 2901 226.2 Total Dead Load for Restoring Moment Second Level Floor Diaphragm Tributary Dead Load Total Dead Load for Entire Building' Total Tributary Seismic Load for Entire House TOTAL BASE SHEAR FOR HOUSE h I w I w,h, /fwxhx I F, (SL) I F,, (ASD) 16 6 1417,3241 0 64 1 6 373 1 4,461 7 8 1236 7531 0 36 13 616 1 1 1 1 654 0771 1 00 1 9,989 I 6,992 OVERTURNING ANALYSIS DUE TO TRANSVERSE LOADS UPPER FLOOR Building Component Roof Diaphragm Ceiling Longitudinal Exterior Walls Longitudinal Partitions Total Dead Load Force (Ib) Dist. 1 1 1 1 13,2601 1 1 1 1 4,4881 1 1 I 1 2641 1 1 1 1 37,0201 Total Moment Due to Transverse Seismic Forces' SEISMIC LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 (ft) 1661 1661 1661 13 01 1 Seismic Weight (Ib) 13,260 0 3,432 4,488 2,640 1,320 37,020 25,140 8,840 3,042 3,978 1,482 1,131 28,106 30,353 65,126 55,493 9,989 2,531 Moment (ft-lb) 220,116 74,501 4,382 481,260 298,999 Printed 10/20/2008 A. Abrous, Ph D., P E HiLine Homes, Inc. Roof Diaphragm Ceiling Longitudinal Exterior Walls Longitudinal Partitions Total Dead Load Roof Diaphragm Ceiling Transverse Exterior Walls Transverse Partitions Total Dead Load Revised 9/3/2008 Total Moment Due to Transverse Wind Forces MAIN FLOOR I I 1 I I I I I 8,840 3,978 1,131 28,106 Total Moment Due to Transverse Seismic Forces Total Moment Due to Transverse Wind Forces Total Overturning Moment in Transverse Loading Total Restoring Moment in Transverse LoadingI 6/10 of Total Restoring Moment in Transverse Loading) OVERTURNING STABILITY' Building Component Force (lb) Roof Diaphragm Ceiling 1 1 1 1 13,2601 Transverse Exterior Walls 1 1 1 1 3,4321 Transverse Partitions 1 1 1 1 2 6401 Total Dead Load 1 1 1 1 37,0201 Total Moment Due to Longitudinal Seismic Forces' Total Moment Due to Longitudinal Wind Forces' MAIN FLOOR 8,8401 3,0421 1,4821 28,1061 Total Moment Due to Longitudinal Seismic Forces' Total Moment Due to Longitudinal Wind Forces' Total Overturning Moment in Longitudinal LoadingI Total Restoring Moment in Longitudinal LoadingI 6/10 of Total Restoring Moment in Longitudinal LoadingI OVERTURNING STABILITY' SEISMIC LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 78 78 78 130 OVERTURNING ANALYSIS DUE TO LONGITUDINAL LOADS UPPER FLOOR Dist. (ft) 16 61 16 61 166 170 781 7 81 781 17 01 Page 26 of 37 OK 126,196 68,952 31,028 8,822 365,378 108,802 27,650 320,9121 846,638 507,983 Moment (ft -lb) 220,116 56,971 43,824 629,340 I 320,911 I 124,136 68 952 23,728 11 560 477,802 104,239 25,974 150,110 1 1,107,142 1 664,285 OK Printed 10/20/2008 A. Abrous, Ph.D P.E. Building Component Roof Diaphragm Ceiling 20% of Flat Roof Snow Load 30 -psf Transverse Exterior Walls Longitudinal Exterior Walls Transverse Partitions Longitudinal Partitions Building Component Roof Diaphragm Ceiling Longitudinal Exterior Walls Longitudinal Partitions Total Dead Load Building Component Roof Diaphragm Ceiling Transverse Exterior Walls Transverse Partitions Total Dead Load Revised 9/3/2008 HiLine Homes, Inc. TABLE G -2 SEISMIC LOADS (GARAGE) SEISMIC SHEAR LOADS ON GARAGE Load Height/ Length (psf) Width (ft) 150 00 150 150 100 100 78 78 78 78 48 0 44 0 00 00 Area (sf) 528 528 374 343 0 0 Total Dead Load for Restoring Moment Roof Diaphragm Tributary Dead Load Total Strength Level BASE SHEAR Total ASD BASE SHEAR OVERTURNING ANALYSIS DUE TO TRANSVERSE FORCES Force (Ib) I 1,426 I 463 I 0 I 18 684 Total Moment Due to Transverse Seismic Forces Total Moment Due to Transverse Wind Forces Total Restoring Moment in Longitudinal Loading 6/10 of Total Restoring Moment in Longitudinal Loading OVERTURNING STABILITY Force Dist. (Ib) 1,4261 1 I 5051 I I 01 18,6841 Total Moment Due to Longitudinal Seismic Forces Total Moment Due to Longitudinal Wind Forces' Total Restoring Moment in Longitudinal Loading 6/10 of Total Restoring Moment in Longitudinal Loading' OVERTURNING STABILITYI SEISMIC LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Seismic Weight (Ib) 7 920 0 2,808 2,574 0 0 18,684 13,302 Page 27 of 37 Seismic Shear (Ib) 1 426 0 505 463 0 0 2,394 1,676 Dist. Moment (ft) (ft -Ib) 7 8 11,120 7 8 3,614 78 0 12.0 224,208 14,734 129,259 224,208 134,525 OK OVERTURNING ANALYSIS DUE TO LONGITUDINAL FORCES (ft) Moment (ft-lb) 7 8 11,120 7 8 3,942 78 0 11 0 205,524 15,062 130,337 205,524 123,314 OK Printed 10/20/2008 A. Abrous, Ph.D P.E. Floor Level Type Load Wind Load (Ib) Minimum Wind Load (Ib) Controlling Wind Loads (lb) Strength Level SeismicLoad (Ib) ASD Seismic Diaphragm Load (lb) Wind Load (Ib) Minimum Wind Load (Ib) Controlling Wind Loads (Ib) Strength Level SeismicLoad (lb) ASD Seismic Diaphragm Load (Ib) Note. Bolded /shaded cells indicate controling shear loads Revised 9/3/2008 Floor Level Type Load HiLine Homes, Inc. Page 28 of 37 TABLE H CONTROLLING SHEAR LOADS HOUSE Main Floor Level Transverse 1 Longitudinal 13,4071 12,326 6,5281 4,147 1 13,4071 12,326 1 9 9891 9 989 6,9921 6,992 GARAGE Main Floor Level Transverse 1 Longitudinal 3,1191 3,897 2,1781 1,494 1 3,1191 3,897 1 2 3941 2 394 1,6761 1,676 CONTROLLING LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Second Floor Level Transverse I Longitudinal 5,599 5,672 3,706 1,989 5,599 I 5,672 6,373 I 6,373 4,461 I 4,461 Second Floor Level Transverse Longitudinal Printed 10/20/2008 A. Abrous, Ph D P E HiLine Homes, Inc. Page 29 of 37 TABLE I -1 WIND SHEAR WALL LOADS (HOUSE) TRANSVERSE LOADS Floor Level Main Floor Level Upper Floor Level Wall Identification 1 2 Check 1 2 Check Wall Type OSB OSB OSB OSB Tributary Load Distance (ft) H 17.0 17.0 34.0 17.0 17.0 34.0 Tributary Load Fraction H 0.5 0.5 1.0 0.5 0.5 1.0 Applied Shear (Ib) 6 704 6 704 13 407 2,799 2 799 Wall Length (ft) 26 0 26 0 26 0 26 0 Applied Unit Shear (lb /ft) 258 258 108 108 Shear Wall Length (ft) 21.0 23.0 2 26.0 Resistive Unit Shear (lb /ft) 319 291 108 108 Shear Wall Height (ft) 7 8 7 8 8 0 8 0 Unit DL on Wall (lb /ft) 340 340 210 210 0.60 *[Unit DL on Wall] (lb /ft) 204 204 126 126 Max. Hold -Down 5 -ft SW (lb) 1,640 Max. Hold -Down 21 0 -ft SW (Ib) Max. Hold -Down 11 0 -ft SW (Ib) 1,151 Max. Hold -Down 12 0 -ft SW (lb) 1,049 Max. Hold -Down 16 0 -ft SW (lb) 858 Max. Hold -Down 26, 0 -ft SW (Ib) -777 -777 LONGITUDINAL LOADS Floor Level I Main Floor Level I Second Level Wall Identification 1 A I B C D 1 B D Wall Type I OSB I OSB OSB OSB I OSB OSB Tributary Load Distance (ft) H I 0 0J 13 0 0 0 13 01 13.0 13 0 Tributary Load Fraction H 0 0I 0.5 0 0 0 51 0 5 0 5 Applied Shear (Ib) 6 163 6 1631 2,836 2,836 Wall Length (ft) I I 34 0 34 01 34 0 34 0 Applied Unit Shear (Ib /ft) I 181 181 83 83 Shear Wall Length (ft) I 18.0 24.0 19.0 29.0 Resistive Unit Shear (Ib /ft) 342 257 149 98 Shear Wall Height (ft) 7 8 7 8 8.0 8.0 Unit Wall DL (lb /ft) 525 525 335 335 0.6 *[Unit DL on Wall] (lb /ft) 315 315 201 201 Max. Hold -Down 4 0 -ft SW (lb) 2,041 1,373 792 380 Max. Hold -Down 5 0 -ft SW(Ib) 1,883 Max. Hold -Down 5 5 -ft SW (lb) 641 Max. Hold -Down 6t 0 -ft SW (Ib) 1,058 Max. Hold -Down 14 0 -ft SW (Ib) -202 Max. Hold -Down- 25.0 -ft SW (lb) 1 Note Maximum hold down loads are identified in shaded /bolded cells Revised 9/3/2008 WIND SHEAR LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Printed 10/20/2008 A. Abrous, Ph D., P E. TABLE 1 -2 WIND SHEAR WALL LOADS (HOUSE +GARAGE) Floor Level Wall Identification Wall Type Tributary Load Distance (ft) H Tributary Load Distance (ft) G Tributary Load Fraction H Tributary Load Fraction G Applied Shear (lb) Wall Length (ft) Applied Unit Shear (lb /ft) Shear Wall Length (ft) Resistive Unit Shear (lb /ft) Shear Wall Height (ft) Unit DL on Wall (Ib /ft) 0 60 *[Unit DL on Wall] (lb /ft) Max. Hold -Down 4 -ft SW (lb) Max. Hold -Down 5 -ft SW (Ib) Max. Hold -Down 21 0 -ft SW (Ib)I Max. Hold -Down 11 0 -ft SW (Ib)1 Max. Hold -Down 12.0 -ft SW (Ib) Max. Hold -Down 16 0 -ft SW (Ib) Max. Hold -Down 18 0 -ft SW (lb) Max. Hold -Down 26 0 -ft SW (Ib) Floor Level Wall Identification Wall Type Tributary Load Distance (ft) H Tributary Load Distance (ft) G Tributary Load Fraction H Tributary Load Fraction G Applied Shear (Ib) Wall Length (ft) Applied Unit Shear (Ib /ft) Shear Wall Length (ft) Resistive Unit Shear (Ib /ft) Shear Wall Height (ft) Unit Wall DL (Ib /ft) 0 6 *[Unit DL on Wall] (lb /ft) Max. Hold -Down 3 0 -ft SW (Ib) Revised 9/3/2008 TRANSVERSE LOADS Main Floor Leve 1 OSB 17.0 0.0 0.5 0.0 6 704 26 0 258 21.0 319 78 340 204 1,640 858 A OSB 00 120 00 0.5 1 948 22 0 89 6.0 325 78 320 192 2,245 HiLine Homes, Inc. Page 30 of 37 2 OSB 17.0 11.0 0.5 0.5 8,263 32 0 258 29.0 285 78 340 204 1,101 999 387 LONGITUDINAL LOADS Main Floor Level B OSB 13.0 05 6 163 34 0 181 18.0 342 78 525 315 3 OSB 00 11.0 0.0 0.5 1 560 24 0 65 8.0 195 78 150 90 1,341 C OSB 00 120 0.0 0.5 1 948 22.0 89 22.0 89 78 320 192 Check 34.0 22.0 1.0 1.0 14 967 D OSB 130 0.5 6 163 34 0 181 24.0 257 78 525 315 Upper Floor Level 1 2 Check OSB OSB 17.0 17.0 0.5 0.5 2,799 2 799 26 0 32.0 108 87 26.0 26.0 108 108 80 80 210 210 126 126 -777 B OSB 13.0 0.5 WIND SHEAR LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 -777 Second Level D OSB 130 0.5 2 836 2,836 34 0 34 0 83 83 19.0 29.0 149 98 80 80 335 335 201 201 34.0 1.0 Printed 10/20/2008 A. Abrous, Ph D., P E. Max. Hold -Down 4 0 -ft SW (lb) 2,041 1 1,373 Max. Hold -Down 5 0 -ft SW (lb) 1,8831 Max. Hold -Down 5.5 -ft SW (lb) Max. Hold -Down 6 0 -ft SW (Ib) 1,058 Max. Hold -Down 14 0 -ft SW (Ib) I -202 Max. Hold -Down 22.0 -ft SW (Ib) 1,421 Max. Hold -Down 25 0 -ft SW (Ib) i Note Maximum hold down loads are identified in shaded /bolded cells Revised 9/3/2008 HiLine Homes, Inc. Page 31 of 37 792 641 WIND SHEAR LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 380 1,730 Printed 10/20/2008 A. Abrous, Ph.D., P E. Floor Level Wall Identification 1 Wall Type OSB Tributary Load Distance (ft) H 17.0 Tributary Load Fraction H 0.5 Applied Shear (Ib) 3 496 Wall Length (ft) 26 0 Applied Unit Shear (lb /ft) 134 Shear Wall LengthIt) 21.0 Resistive Unit Shear (lb /ft) 166 Shear Wall Height (ft) 7 8 Unit DL on Wall (lb /ft) 340 0 60 *[Unit DL on Wall] (lb /ft) 204 Max. Hold -Down 5 -ft SW (Ib) 449 Max. Hold -Down 21 0 -ft SW (lb) Max. Hold -Down 11 0 -ft SW (lb) Max. Hold -Down 12.0 -ft SW (Ib) Max. Hold -Down 16 0 -ft SW (lb) -333 Max. Hold -Down 26 0 -ft SW (Ib) Revised 9/3/2008 HiLine Homes, Inc. Page 32 of 37 TABLE J -1 SEISMIC SHEAR WALL LOADS (HOUSE) TRANSVERSE LOADS Main Floor Leve 2 OSB 17.0 0.5 3,496 26 0 134 23.0 152 78 340 204 64 -38 LONGITUDINAL LOADS Floor Level Main Floor Level Wall Identification A B C D 1 B Wall Type OSB OSB OSB OSB 1 OSB Tributary Load Distance (ft) H J 0 0 13.0 0 0 13 01 13 0 Tributary Load Fraction H 0 0 0.5 0 0 0.51 0.5 Applied Shear (Ib) 3 496 3 496 2,231 Wall Length (ft) 34 0 34 0 34 0 Applied Unit Shear (lb /ft) 103 103 66 Shear Wall Length (ft) 18.0 24.0 19.0 Resistive Unit Shear (lb /ft) 194 146 117 Shear Wall Height (ft) 7 8 7 8 8 0 Unit Wall DL (lb /ft) 525 525 335 0 6 *[Unit DL on Wall] (lb /ft) 315 315 201 Max. Hold Down 4 0 ft SW (Ib) 885 506 537 Max. Hold -Down 5 0 -ft SW (lb) 728 Max. Hold -Down 5 5 -ft SW (lb) 387 Max. Hold -Down 6 0 -ft SW (Ib) 191 Max. Hold -Down 14 0 -ft SW (Ib) -1,069 Max. Hold -Down 25 0 -ft SW (Ib) Note. Maximum hold down loads are identified in shaded /bolded cells Upper Floor Level Check 1 1 2 Check OSB 1 OSB 34.0 17.0 17.0 34.0 1.0 0.5 0.5. 1.0 6 992 2,2311 2,231 26 01 260 861 86 26.01 26.0 861 86 801 80 2101 210 1261 126 -952 -952 SEISMIC SHEAR LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Second Level D OSB 13.01 0 51 2,231 34 0 66 29.0 77 8.0 335 201 213 -1,897 Printed 10/20/2008 A. Abrous, Ph.D P E HiLine Homes, Inc. Page 33 of 37 TABLE J -2 SEISMIC SHEAR WALL LOADS (HOUSE +GARAGE) Floor Level Wall Identification Wall Type Tributary Load Distance (ft) H Tributary Load Distance (ft) G Tributary Load Fraction H Tributary Load Fraction G Applied Shear (Ib) Wall Length (ft) Applied Unit Shear (lb /ft) Shear Wall Length (ft) Resistive Unit Shear (lb /ft) Shear Wall Height (ft) Unit DL on Wall (lb /ft) 0.60 *[Unit DL on Wall] (lb /ft) Max. Hold -Down 4 -ft SW (Ib) Max. Hold -Down 5 -ft SW (lb) Max. Hold -Down 21 0 -ft SW (lb) Max. Hold -Down 11 0 -ft SW (Ib) Max. Hold -Down 12 0 -ft SW (Ib)I Max. Hold -Down 16 0 -ft SW (Ib)I Max. Hold -Down 18 0 -ft SW (Ib)I Max. Hold -Down 26 0 -ft SW (Ib)I Floor Level Wall Identification Wall Type Tributary Load Distance (ft) H Tributary Load Distance (ft) G Tributary Load Fraction H Tributary Load Fraction G Applied Shear (Ib) Wall Length (ft) Applied Unit Shear (lb /ft) Shear Wall Length (ft) Resistive Unit Shear (lb /ft) Shear Wall Height (ft) Unit Wall DL (lb /ft) 0.6 *[Unit DL on Wall] (lb /ft) Max. Hold -Down 3 0 -ft SW (Ib) Revised 9/3/2008 TRANSVERSE LOADS Main Floor Leve 1 OSB 17.0 0.0 0.5 0.0 3 496 26 0 134 21.0 166 78 340 204 449 -333 A OSB 00 12.0 00 05 838 22.0 38 6.0 140 78 320 192 801 2 OSB 17.0 11.0 0.5 0.5 4 334 32.0 135 29.0 149 78 340 204 44 -58 -670 B OSB 130 0.5 3 496 34 0 103 18.0 194 78 525 315 3 OSB 00 11.0 0.0 0.5 838 24 0 35 8.0 105 78 150 90 637 C OSB 00 120 00 0.5 838 22.0 38 22.0 38 78 320 192 Check 34.0 22.0 1.0 1.0 7 830 LONGITUDINAL LOADS Main Floor Level D OSB 130 0.5 3 496 34 0 103 24.0 146 78 525 315 Upper Floor Level 1 2 Check OSB OSB 17.0 17.0 0.5 2,231 2,231 26 0 32 0 86 70 26.0 26.0 86 86 80 80 210 210 126 126 -952 B OSB 130 0.5 0.5 -952 0.5 2,231 2,231 340 340 66 66 19.0 29.0 117 77 80 80 335 335 201 201 SEISMIC SHEAR LOADS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Second Level D OSB 130 34.0 1.0 Printed 10/20/2008 A. Abrous, Ph D., P E. Max. Hold -Down 4 0 -ft SW (Ib) 885 506 Max. Hold -Down 5 0 -ft SW (Ib) 728 Max. Hold -Down 5 5 -ft SW (Ib) Max. Hold -Down 6 0 -ft SW (lb) 191 Max. Hold -Down 14 0 -ft SW (lb) -1,069 Max. Hold -Down 22.0 -ft SW (lb) -1,815 Max. Hold -Down 25 0 -ft SW (Ib) Note Maximum hold down loads are identified in shaded /bolded cells HiLine Homes, Inc. Page 34 of 37 537 387 2131 1 -1,897 Revised SEISMIC SHEAR LOADS Printed 9/3/2008 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 10/20/2008 A. Abrous, Ph.D., P E Description Diaphragm Depth (ft) Fpx Story Coefficient Diaphragm Weight wpx (Ib) Diaphragm Shear Fpx Diaphragm Shear/Weight Ratio (Fpx/wpx) Lower limit coefficient (0.2 SDS IE) Upper limit coefficient (0 4 SDS IE) Adjusted Coefficient Compared to Lower Limit Adjusted Coefficient Compared to Upper Limit Strength Level Diaphragm Shear (Ib) Strength Level Diaphragm Unit Shear (lb /ft) Service Level Diaphragm Shear (Ib) Service Level Diaphragm Unit Shear (Ib /ft) Shear Wall Nail Spacing S (in) Number of nails per foot Unit Shear Per Nail vnaii (Ib) Nail Load Factor o Nail Slip Factor e Nail Slip Deflection y (in) Hold -Down Deflection, y (in) Total Shear Wall Deflection, y (in) Calculated Story Drift, (in) Allowable Story Drift, y (in) Revised 9/11/2008 HiLine Homes, Inc. Page 35 of 37 Table K. Roof Diaphragm Calculations Reference ROOF /FLOOR DIAPHRAGM CALCULATIONS TRANSVERSE LOADS (Table B (Table D 'Table G 'Table G ASCE Sect. 12 10 1 i F /w ASCE Sect. 12 10 1 0.2 SDS IE ASCE Sect. 12 10 1 0 4 SDS IE ASCE Sect. 12 10 1 ASCE Sect. 12 10 1 ASCE Sect. 12 10 1 QE Calculation 1/2 Q/b Calculation Q 0 7QE Calculation yr SHEAR WALL DEFLECTION Cross Sectional Area of Shear Wall Chords (in Drawings Shear Wall Height, h (ft) (Design Drawings Minimum Shear Wall Length, b (ft) IDesign Drawings Maximum Unit Shear lb /ft J Maximum SL Seismic Unit Shear v, (lb /ft) (Table J Shear Wall Bending Deflection y (in) (Calculation Shear Wall Shear Deflection, y (in) (Calculation 'Dimension b ISDS I/R I wpx F px CALCULATIONS 11 Specifications I�Caculation IAPA Design Guide' 11APA Design Guide' IAPA Design Guide' IAPA Design Guide' IAPA Design Guide' II Calculation Calculation ROOF DIAPHRAGM CALCULATIONS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 I Equation /Comment I IAchard 2(1 5)(5 5) 1h Ib IvASD Iv IYb 8vh3 /EAb IYs vh /Gt ISp IS lvvfna=il yna ii v/S 616 e 1.2 (vnaii /616) 3 018 IYns 0 75he I (Y sw Yb +Y /b s Yns +Yhd' I CdYsw/l IASCE 7 Table 12 -11Ya 0 020h Calculated deflection satisfy code maximuml drift, y 5 0.020h, per ASCE 7 Sec. 12.8.6 I ROOF DIAPHRAGM DEFLECTION CALCULATIONS Value 26 0 180 25 140 4,461 0 1775 0.2340 0 4680 0.2340 0.2340 5,883 113 4 118 79 165 78 55 117 0 163 8 0 0053 0 0153 6 2 81.9 0 1330 0 0027 0 0159 0 0468 0.08 0.33 1.87 YES Printed 10/20/2008 A. Abrous, Ph D., P E. Modulus of Elasticity- Diaphragm Chord, E (psi) INDS Table 4A Cross Sectional Area of Diaphragm Chords (in Drawings Diaphragm Length (ft) (Design Drawings Blocked Bending Deflection (in) Shear Modulus,. Gt (lb /in) Shear Deflection of Sheathing Panel (in) Diaphragm Nail Spacing, S (in) Number of nails per foot Unit Shear Per Nail, vnaii (Ib) Nail Load Factor o Nail Slip Factor e Nail Slip Deflection, y (in) Chord Splice Deflection, ycs (in) Total Blocked Deflection, y (in) Factor for Unblocked Diaphragms Unblocked Diaphragm Deflection (in) Check Diaph. /Shear Wall Deflection Ratio >2 0 Diaphragms constructed of wood structural panels in one- and two family residential buildings are permitted to be idealized as flexible per ASCE Standard 7 -05 End Wall Diaphragm Shear (Ib) Diaphragm Span (ft) Diaphragm Length (ft) Diaphragm Unit Shear (lb /ft) Diaphragm Maximum Moment (ft -lb) Diaphragm Chord Force (lb) Allowable Nail Load (Ib) Adjustment For Wind /Seismic Loads Adjusted Allowable Nail Load (Ib) Minimum Number of Nails Required At Splices Maximum Nail Spacing at Splices (in) Minimum Splice Length (in) Design Splice Length (in) AikiariejaPgielit nfaarib Axial Chord Stess (psi) Report Table G 'Design Drawings 'Design Drawings [calculation [Calculation ICalculation INDS Table 11N INDS Table 2.3.2 ';Calculation 'Calculation 'Design Drawings 'Calculation 'Design Drawings al &illation ICalculation Allowable Parallel Compressive Stress (psi) IVVWPA Table 1 Allowable Parallel Tensile Stress (psi) IWWPA Table 1 INo. 2 Hem -Fir Note 1 Diaphragms And Shear Wall Design /Construction Guide, November 2004 Revised 9/11/2008 Description DIAPHRAGM CHORD SPLICE STRESS CALCULATIONS HiLine Homes, Inc. Page 36 of 37 IAPA Design Guide' IYb 5vL /8EAb 'Table A -3' I7 /16 -in OSB IAPA Design Guide' IYs vL /4Gt ISpecifications ISp Calculation IS APA Design Guide' 'vnaii v/S Calculation Ivf vnaii 616 IGAPA Design Guide 1.2 *(v—;i/6161 IAPA Design Guide' IYns 0 188Le 'APA Report T2002 -17 April 17 2002 INo 2 Hem -Fir E 11 300 000 IAchord 2(1 5)(5 5) 16 5 IL= I 34 0.0050 83 500 0.0115 6 2 56 6 0 0918 0 0009 0 0057 0 0625 Yd Yb ys Yns Ycs 0.0847 APA Report T2002 -17 April 17 2002 I 2.50 APA Design Guide'' Calculation I 0.21 Calculation IYd /Ys,,, 2.0? I 2.54 Reference I Equation /Comment I Value ROOF UPLIFT CALCULATIONS VEnd Q/2 lb IL I yr V/b IM v /8 IC= T =M /b= I H -F 10d Common 110- minute loads I F 1 6 FNaii I NN -Min C+ /FA ROOF DIAPHRAGM CALCULATIONS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 IS Lsplice SNN -Min I I Design Specification I jiindae I Fot C/A T/A INo 2 Hem -Fir 2,941 26 34 0 113 16,347 629 102 16 163.2 3.9 6. 0 23.1 48.0 1 <,3tJ6,, 38 1,250 500 Printed 10/20/2008 A. Abrous, Ph D P E. HiLine Homes, Inc. Page 37 of 37 Description I Reference I Equation /Comment Roof Truss Span, b (ft) 'Design Drawings I Tributary Area to Truss Connection (sf) (Trusses 24-in o cIA 2b/2 b Maximum Wind Uplift Pressure 85 mph, C (psfICalculated [0 5`(13 8 +9 6)] x 1.21 Maximum Wind Uplift Pressure 110 mph, D (plCalculated [0 5 *(23 1 +16)] x 1 47 Maximum Wind Uplift Pressure 120 mph, C (psiCalculated [0 5 *(27 4 +19 1)] x 1.21 Maximum Wind Uplift Load At Connection (Ib) 185 mph, Exp. C Fup pA Maximum Wind Uplift Load At Connection (Ib) 1110 mph, Exp. D Fup pA Maximum Wind Uplift Load At Connection (Ib) 120 mph, Exp. C Fup pA Roof Unit Dead Load w (psf) Design Criteria Roof Dead Load to Truss Connection (Ib) I FDL =0 6 w Net Load to Truss Connection (Ib) 185 mph, Exp. C FNet F up FDL Net Load to Truss Connection (Ib) 1110 mph, Exp. D FNet Fup FDL Net Load to Truss Connection (Ib) 1120 mph, Exp. C FNet FUp FDL Allowable Uplift for Simpson H10 Clip (Ib) ISPF /Hem -Fir with 160% Increase Allowable Uplift For Simpson H2 5A Clip (Ib) ISPF /Hem -Fir with 160% Increase Allowable Uplift For Simpson H1 Clip (Ib) ISPF /Hem -Fir with 160% Increase Revised 9/11/2008 ROOF DIAPHRAGM CALCULATIONS 1768 -08 Lateral 30 Snow, 120 mph, Exp C, SDC D2 Value 26 0 26 0 -14.2 -28 7 -28 1 -368 -747 -731 150 234 -134 -513 -497 850 535 400 Printed 10/20/2008