Loading...
HomeMy WebLinkAbout1604 McDonald St Technical - BuildingTECHNICAL Permit# Og 2O Address ()Lk Mc 0 AA S-+ Project description `,12,u3 o rne Date the permit was finaled 02' -41' Number of technical pages 1 s LOLL ($)(0 S Z s V?- sly $2. 5 9 WSW) L° v►eJ( Tr• 1)-( 141 LjOU ,E v, 2 3)4 -f- (.9'x itx/Pl S 4- 8,2 x 4 //1_ (77)J Zy32 t o c32-(2 `,a= l�'X� z�tz t L/ i\) (ms I 11-1 l3 2 z 1a i UL,J 12x�'n /N C96'\a-cok -/4 QTSC TKla 2g-' 2 _I4t t/ i4i' �L S \L3--:= (a X 1 4,S c2-(1 2L( Z x //z., L x (7 (0 P .I l ti 3 c10 12 (1,62-7 1;i31— _4(oc6s t-8 off) +7s 235 ©(LM- (l(6-4-11-(3).y-7543 L� —SPA 711/Cei L-)kcol--11-) ol) 11\Po t_c)PcoS 0 kyLV:ov Ak oci (0) s-_ \/TOT '1103f (Q-Ls-t_ GH‘,6 0\) 7 LAT‘xtfac- ogstqo v T132,--4A-- j o z)-4 /_/.1.--i, A.,/ (ak- 1 Ccitjt 7862 a- 63 Cf:' 0 2sto÷ -3x16- t3S-x ,L131-0) GO FIP 124-P' 0 D WIWc S! A o d 1b cuAt(__s PL-/ LI NES 3• 2_0 S �3' S Pz I t 32- t- 4/((o3 162- 4/6- Cx w∎. c:? ?s f33 4? 7L( P (35"pcF t2. 135'x 00V 2 6 3 1-0= ('7 y— sz.3i1 3 62 7°o- (6c0 YA tL5 SR- 3 o 7 7s GTWt =5e 3c� in)COUJ r /11 l /11 7gofr 95 cpoo (1 3 2-39 y 4 71 to'us* x x_ 3`-(= 215 t7 t o+ I -f 300 to LS /2 z 7�9 45'2,7 t57 'J7i'z� (3, (co J l3 So 4 GsVpis ovio1/4L-s 47 VLF 301 '3 7 f U r/7 76 1G xs 6 lob N.0 -2, 7/g 5boe--o cu O. e- c,c.// t Coo J (0(� cie)J 7 7S-- N jd� spu4 F wf r�.k; L-/ 7:- 7oc,9-.41- 70( 0 t_-1+ LO` 29 4/6 2-3 7 c) i5)03-t 3x1S t A1Q l7c&PC.F FA, 0 3 Sto °02 )7t q y x/ 4 4><7,1 4 (c>c., 629)2/A3 zzifi z7/ 4t/ Gtk, C(4U 3 /S Xt1. 0 14.,K 1vici,(„ (0.-LSt/e 7_ ?LC koob tV1....=. p )10_1 c T/ 1.) c <4. --0--tSiz/z-e,s 31 V 1 -rsit3 L11E c)-T S>AC q0 XN. '2_ t 4 1) 1 sVz, 7 5 1 1_1 /c)-69 z 22- e-r p()- (o'. (,,c"),) 1 3 72 i/ ve vtv/ L/7 kW 77e F Ar oi"itt-e-S yo 146.c )ci27ige 1414\ (c /6- lf--) c4A.iv v=43 ?44 5 afi 10-LA sx Lo `(/6c) (�L r5 --t- 14 /L7c 22� 2 A-S 2C x) 7 1/ ZjC.) KO tlZSo`o LE'9'/ f fib <S 1 L 1392-4 40 /07 (JYGJ u x= 21,5 luez 0 90 1 z _S c/t/5-5 c-koebai4 vef 7/ 4 r e ---cr 4 S L z )C 1_11 7- Ca x 6 kc■O =-Q0k1) 1 1 S ,3% ••••••Il rz L" 5') AW wo 7-0 co= -ekkcfl-ik 01-7 v 7-7-1i, c 5 0-1 7/ -7 0 w20 5/ =1 `fl 5.- CP .513q c 51V 4 0) .Leb )-7hZ- 1- '`,41-, V1 4 "11 c\P'? 9 i(VO -)qi)/(0 4 fL creAk-/ 2k7G -/k LITc 6 -e- 9 11 P(,-F (0k, o)L) 3r ATL73 /3G V Pc( oQo AL f i\x„, J'tAz 20 A As= L-1 ca !0c- 1 r t cs cc) za.6_cor,,<1. A ?5 -zct 6 Au-A-Ge /qc) vik (oAt /-(3d- A e 3 e X- 11- 17 ttA 1)3, -16 7 T 333 i A3 X 1 -3 i 144 4 a 4e deo x t 1 ,5"A 1-4 7 z 37-i6 7 tv.v2-c14... L_ L j Fe_ccat_ 1 Lauc_01—i) esvA,) 41/4s-9 (V e t io/ 7F y z 03S-fittU 0 V9c) H rtol- 2>e\ qt 1 As I lc:) 1— -2Seses "I a ketc_c: ez.c.)/;7 A I L 5/6"th A oi; ei /6 cL-iya ,S cwe ,6 j) L L Lo L__ \\4\ft _Le ti ttsc e„ Pe ;14 Ats- 014 r— cpt-T3 s'ic3x \r3 L062 Ni( /AI 6-1-. \4 -f-.1t-t L-- W .1- vC- A -7 t 1 C V2)---Lc- e- ,0 V Glmvco�, 2( &F)1, 2cc)xl t 5 (5 V A 6(.c.)7 3 L0 7` Akd Z-) �V1= (o X 36o7 161.0 1 (920+ 1 Z FL- vu A- 4711 )0),.0 j 1 l r F&Awv //V X7\-1 ✓L,e-T 1 teat iz-/ sedgy 267'' c� (is-0,$) opcy V lL /zkce7,% 167 6, Ixto 0 2, OA koV -soo �ld� Oh, 2G(f w I i !->17 -.)(Az57- I T 1 t 't 1 1 n= 4;0■2.* t i t■■■■ 1 1 1 1 c 1 t 1 t■1nk 1 V 1, 1 1, )1 1 H: 4\ ,-,‘.4 _61: k....4 AO t t I t -L61,9 t 1 A\---- i- 11).0. S. I 1 1 ti____ V_?_ 'Ck?' LI_ _a ‘'e--:-/--\ t•- 7 I 1 k 1, -4------- i k 1 AtiSTr__- 01\ ec60,e CI-- 1, =74 T v.tis 1 1 or k I- t ---t t 7/ .0‘ IJ 00 3- I I I I_ I I I 1 I I 1 '1 1 1 1 11 11 I 1 1 I I 1 I I I 1 111 i I I 1 1. I i J 1 i i I 1 i i 1 1 1 1 1 1 s 17 34 /1_ 1, i.xi -7. 71.11EVI i i i I 1 1 1 I 1 1 1 i 1 i I I i L i....c.._?r1 I: 1 1 1 i 1_1 I i i 4 i c I II I 1 1 1 I ---l I 1 's r 1 r I 'Il-----t----"Irrr--.4— I 1 1 i I I i l I I 1 1 I I 1 I III II t I i 1 1 I I i 1 I l I i 1 1 1 1 f 1 2;y11 44(6 if 198fry(ki,P10) i I 1 I I I I 1 1 i i ii 1 1 1 1 1 1 I I t I 1 I i 1 i i 1 1 1 I i •I l 11, S I I I I L 'i 1 1 b n t I 1 I I I I i I t 1 1 I I I r10 Na 1 I I r I i I 1 1 ii3 1 I 1 I -(11(,// 1-tIgC/I 0151'D I, i 1 Z) a i 1 I I 945 1 7 1 I CO I 0 .9k 4 4 1 I I I L 1 i 1 i 1 FA 044 6.4.6 i D_g_t i6AH‘1 j 1 1 I /)I 1 ck 5 1 I /tk 1 ,0 I i i .(I_C_-?( Ti 55 1 II 0 Ai ifOo 1=1 p ill I I 1 I I i 1 I I I I I I 1 I I I I I I 1 I I i It 3 ,11,1 t I 0 c2 LC...-1 I e::? 'rt 1 I 1 1 At-Lei 1......_-.7. 1 v- I V 1. 1. 1 I '1 t A 1 -•.,'L..-- I I I 7_ 1,-2,4 c,-,..5 x c2_ i! -1-__A-G--- j ,_7 Ji!jli 1 i I Ill!,m111111 111;1 j I I I I t NJ ILI e_eq6 LC)- 1 606 s I I'L.1/11 1 I 1 I 1 I 1 I 1 1 1 i Li- 2 I 1 1 i 1 1 I 1 Iiii 1 i 1 1 j r 0 -1- I I I 1 I I I 1 I I I v 7 ir-'7.--; -7 1" k I 1 1 1 S 3 r2-Lr !Ili!!! ye L (,51 030 !c I I 1 s t et 7 L C r) s. 1 s 'Swi s I I rj 4 I s I s s s s i 1 I ke,1V P t. c. P r 4 L 4Q4N* --jj 1- t t ,----1----'—''--k—n I I 1 i i, 1 s 1 A' 1 t, i A f l.-- L- 1 s I t t I k s I I i I s AXIAL COMPRESSION AND COMBINED LOADING CALC. PROJECT LINCOLN -KLEIN CLIENT KLEIN JOB 07289 DESCRIPTION: GLB POST DATE: 12/20/2007 TRIG. AREA (ft,1 NO. MEMBERS MEMBER I WIDTH w (/n.) ADJUSTMENT FACTORS CD 1 CM I Ct I CL 1 CF I 1,'' °..W4`.33..._v TO.'011: .:..rl: %.',..,1'?..A .d. a1 ,1;, ..'1%K7 .:1,,,,,-.:'7:', °Iu..` Cfu 1 Ci 1 Cr I Cc 1 n Cf 1 K >1 '1 Ib`^ _4.'. ';11. ,ft ,'1; a 1:.,..: ..';11'. TABLULATED VALUESISEE SHEET 21 I BUCKLING COEF Kce C Ke fb(psij rb(psi) 900 1995 KCE E �ld� i F 2 COMPUTED VALUES F'b(psi 1995 fb S F' F'bl —(f(FJ 10 MEMBER INFO. TOTAL AREA SECTION MODULUS A S (se. in) (InA31 30.75 1 26.27 VERT. LOAD I P r: 360 ;.....,al fc(psi) rc(psi) 12 1795.5 1 FeE I x (F',E /F:� 377 I F 2c (COMBINED LOADING CALC. DEFLECTION I 0.47 OSI A (in) 1.07 1AXIAL LOAD CALC Liz 0.03 OK (in/in) 203 F J e F, 1 0 M 0.45 OK (BENDING CALC I SUMMARY NO. MEMBERS 1 1 SIZE I b ZENOVIC AND ASSOCIATES, INC. 301 EAST 6TH STREET SUITE 1 PORT ANGELES, WA 98382 UNBRACED DEPTH OF MEMBER MODULUS OF COMP DESIGN BENDING DESIGN LENGTH IUNBRACEDI ELASTICITY STRENGTH VALUE L d E Fc Fb et OA (a) (a) LAY,_ 6 I WIND FACTOR CV CP 0.20 LOADING INFO. MOMENT M Mb) 1969.3 ,./F) 2 FEIF: 2c c h 5.125 P IHORIZ. REACTION lib) 1 438 Ib/ftA2 Pc(psi) I 367 a AXIAL COMPRESSION AND COMBINED LOADING CALL. PROJECT LINCOLN -KLEIN CLIENT KLEIN JOB 07289 DESCRIPTION: DBL. KIND STUD AT 5' WINDOW DATE: 12/20/2007 TRIB. AREA (ft) MEMBER INFO. NO. MEMBERS I MEMBER I TOTAL AREA WIDTH I w I A (in.) (sq. in) WA' €!,,.1V.' ',"V fr M 16.5 ADJUSTMENT FACTORS 'I WIND FACTOR CD 1 CM I C( 1 CL 1 CF 1 CV 1 P =_k` 1:93 d 1fi..,��.1. *47,...:1'..2:M_<:! r,...,, -fi .,._...`.I.E:._ ''1:3L" l;. '1;;;.'19'5%:'.7.: Cfu I CI I Cr I Cc I Cf 1 CP 0...17.1%,:t 7..411441'-it'' 1- 7 :,1 :I 41.15'`.7.1 :_,Its ".1ia:'. ":10.. ;10P.!.. <1 0.13 TABLULATED VALUES(SEE SHEET 21 I Kce IC COEF I Ke COMPUTED VALUES ib(psl) F'b(psi) F'b(psi) 1562 1789.515 1789.515 F' Fb b l 0 L 10 F' f.° 51.0 F SECTION MODULUS S (IM3) 15.13 fc(ps0 Pc(psi) 22 2334.15 FcE I F' 1 E I F 1 (F E F) F�EI F 311 I x 2c COMBINED LOADING CALC. DEFLECTION 0.94 A (in) 1.73 AXIAL LOAD CALC Lfx 0.07 OK 125 BENDING CALL 0.87 OK I SUMMARY I NO. MEMBERS 1 2 SIZE I b 1 2 UNBRACED DEPTH OF MEMBER LENGTH (UNBRACEDI (in) 1 ZENOVIC AND ASSOCIATES, INC. 301 EAST 6TH STREET SUITE 1 PORT ANGELES, WA 98382 LOADING INFO. VERT. LOAD I MOMENT P M (Ib (ft-lb) 1969 3 2c c h 6 IHORIZ REACTION MODULUS OF COMP DESIGN BENDING DESIGN ELASTICITY STRENGTH VALUE E Fc Fb (nsQ (EA to? (lb) 438 Ib/8A2 F'c(ps') I 302 oy Woyorha TJ -Beam® 6.30 Serial Number User: 2 12/11/2007 7:52:57 AM Page 1 Engine Version: 6.30.14 Member Slope: 0/12 Roof Slope0M2 3 1 12' All dimensions are horizontal. LOADS: Analysis is for a Header (Flush Beam) Member Tributary Load Width: 14' Primary Load Group Snow (psf): 25.0 Live at 115 duration, 15.0 Dead SUPPORTS: 1 Wood column 2 Wood column 3 Wood column DESIGN CONTROLS: Maximum -4004 10986 Shear (lbs) Moment (Ft -Lbs) Live Load Defl (in) Total Load Defl (in) PROJECT INFORMATION: 07289 LINCOLN LOGS KLEIN RESIDENCE Input Bearing Width Length 5.13" 1.50" 5.13" 3.63" 5.13" 3.62" GLB RIDGE BEAM 3 1/8" x 12" Glulam (24F V8 DF) THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED Design -3313 10986 0.406 0.586 Copyright O 2007 by iLevel®, Federal Way WA. TJ -Beam® is a registered trademark of iLevel Vertical Reactions (lbs) Detail Live /Dead/Uplift/Total 1912/1116/0/3028 4706/2676/0/7383 4569 2781 0 7350 Control 6900 17250 0.414 0.621 Result Passed (48 Passed (64 Passed (2L/367) Passed (20255) Other By Others None By Others None By Others None OPERATOR INFORMATION: Scott Headrick Zenovic Assoc. 301 East 6th St. #1 Port Angeles, WA 98362 Phone 360.417.0501 scott@zenovic.net Overall Dimension: 30' El 12' g' Product Diagram is Conceptual. Location Rt. end Span 1 under Snow ADJACENT span loading Right OH under Snow ALTERNATE span loading Right OH under Snow ALTERNATE span loading Right OH under Snow ALTERNATE span loading Deflection Criteria: STANDARD(LL:U360,TL:U240). Bracing(Lu): All compression edges (top and bottom) must be braced at 23' o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability The load conditions considered in this design analysis include altemate and adjacent member pattern loading. ADDITIONAL NOTES: IMPORTANT! The analysis presented is output from software developed by iLevel iLevel® warrants the sizing of its products by this software will be accomplished in accordance with current code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user This output has not been reviewed by an iLevel® Associate. -Not all products are readily available. Check with your supplier or iLevel® technical representative for product availability PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS. Allowable Stress Design methodology was used for Building Code IBC analyzing the iLevel® Custom product listed above. The analysis presented is appropriate for Glulam beams. MECAWind Version 1 23 per ASCE 7 -05 Developed by MECA Enterprises Inc Copyright 2007 www mecaenterprises com Date 12/6/2007 Project No 07289 Company Name ZENOVIC ASSOCIATES INC Designed By SRH Address 301 EAST 6TH STREET SUITE 1 Description GARAGE FOR LOG HOME City PORT ANGELES Customer Name KLEIN State WA Proj Location PORT ANGELES WA File Location \\Zen- server \data \Active Projects\ 07289 Lincoln- klein \ENGR \Structual \WIND SFR wnd Detailed Wind Load Design(Method 2) per ASCE 7 -05 Basic Wind Speed(V) 100 00 mph Structure Type Building Structural Category Natural Frequency Importance Factor Alpha At Am Cc Epsilon Slope of Roof RHt Ridge Height Ht Mean Roof Ht II 1 00 1 00 11 50 0 09 0 11 0 15 0 13 6 12 16 00 ft 12 50 ft Bldg Length Along Ridge 24 00 ft Exposure Category Flexible Structure Kd Directional Factor Zg Bt Bm 1 Gust Factor Category I Rigid Structures Simplified Method Gustl For Rigid Structures (Nat Freq >1 Hz) use 0 85 Gust Factor Category II Rigid Structures Complete Analysis Zm 0 6 *Ht lzm Cc *(33 /Zm) ^0 167 Lzm 1 *(Zm /33) ^Epsilon Q (1 /(1 +0 63 *((B +Ht) /Lzm) ^0 63)) ^0 5 Gust2 0 925 *((l +1 7 *lzm *3 4 *Q) /(1 +1 7 *3 4 *lzm)) Figure 6 -5 Internal Pressure Coefficients for Buildings, GCpi GCPi Internal Pressure Coefficient -0 18 Gust Factor Summary Not a Flexible Structure use the Lessor of Gustl or Gust2 0 85 Figure 6 -6 External Pressure Coefficients Cp Loads on Main Wind -Force Resisting Systems(Method 2) D No 0 85 700 00 ft 1 07 0 80 650 00 ft Zmin 7 00 ft Slope of Roof(Theta) 26 57 Deg EHt Eave Height 9 00 ft Type of Roof Gabled Bldg Width Across Ridge= 24 00 ft 0 85 7 50 ft 0 19 540 11 ft 0 95 0 90 MWFRS -Wall Pressures Perpendicular to Ridge Wall Leeward Walls -0 50 Side Walls -0 70 Elev Kz Kzt ft 16 00 1 04 1 00 22 67 11 38 Note 1) Total Leeward GCPi Windward GCPi 2) Shear and Moment are sum of forces (Leeward +Windard) acting on bldg Roof Location Windward Min Cp Windward Max Cp Leeward Perp to Ridge Overhang Top (Windward) Overhang Top (Leeward) Overhang (Windward only) Wall Leeward Walls -0 50 Cp GCpi(psf) GCpi(psf) qz Windward Wall--- psf +GCpi -GCpi CP -0 28 0 19 0 60 0 28 0 60 0 80 13 56 17 37 MWFRS -Wall Pressures Parallel to Ridge Cp GCpi(psf) -13 56 19 45 GCpi(psf) 9 37 0 41 15 47 5 34 11 43 15 24 5 49 9 30 Total Shear Moment -GCpi Kip K -ft 24 94 9 58 76 63 GCpi(psf) GCpi(psf) -5 49 1 30 7 66 7 40 5 34 -11 43 15 24 Side Walls -0 70 Elev Kz Kzt qz Windward Wall Total Shear Moment ft psf +GCpi -GCpi -GCpi Kip K -ft 16 00 1 04 1 00 22 67 11 38 Note 1) Total Leeward GCPi Windward GCPi 2) Shear and Moment are sum of forces (Leeward +Windard) acting on bldg Roof Dist from Windward Edge 0 0 ft to 6 3 ft 6 3 ft to 12 5 ft 12 5 ft to 24 0 ft -17 37 -9 30 19 45 24 94 9 58 76 63 Cp +GCpi(psf) GCpi(psf) 0 91 -21 33 0 89 -21 03 0 51 -13 72 -13 26 -12 96 -5 65 Main Wind Force Resisting System Transverse Direction Building GCpf +GCpi -GCpi qh Min P Max P Surface psf psf psf 1 0 55 0 18 -0 18 22 42 8 30 16 37 2 -0 1 0 18 -0 18 22 42 -6 28 1 79 3 -0 45 0 18 -0 18 22 42 -14 12 -6 05 4 -0 39 0 18 -0 18 22 42 -12 78 -4 71 5 -0 45 0 18 -0 18 22 42 -14 12 -6 05 6 -0 45 0 18 -0 18 22 42 -14 12 -6 05 1E 0 73 0 18 -0 18 22 42 12 33 20 40 2E -0 19 0 18 -0 18 22 42 -8 30 -0 22 3E -0 58 0 18 -0 18 22 42 -17 04 -8 97 4E -0 53 0 18 -0 18 22 42 -15 92 -7 85 1T 2 07 4 09 2 T -1 57 0 45 3T -3 53 -1 51 4T -3 19 -1 18 Main Wind Force Resisting System Longitudinal Direction Building GCpf +GCpi -GCpi qh Min P Max P Surface psf psf psf 1 0 4 0 18 -0 18 2 -0 69 0 18 -0 18 3 -0 37 0 18 -0 18 4 -0 29 0 18 -0 18 5 -0 45 0 18 -0 18 6 -0 45 0 18 -0 18 1E 0 61 0 18 -0 18 2E -1 07 0 18 -0 18 3E -0 53 0 18 -0 18 4E -0 43 0 18 -0 18 1T 2T 3T 4T 22 42 22 42 22 42 22 42 22 42 22 42 22 42 22 42 22 42 22 42 4 93 19 51 12 33 10 54 14 12 14 12 9 64 28 03 15 92 13 68 1 23 4 88 3 08 2 63 13 00 11 43 -4 26 2 47 -6 05 -6 05 17 71 19 95 -7 85 5 61 3 25 -2 86 -1 06 -0 62 Notes 1) Min P qh (GCPf +GCpi)) Notes 2) Max P qh (GCPf GCpi)) Notes 3) For Torsional Load Cases the zones are designated with a T The pressures(Min P Max P) are 25% of the full design wind pressures(Ld Case 1T= 25 *1(id case 1) 2T =25 *2 3T =25 *3 4T= 25 *4) Exceptions to Torsional Load Cases One story buildings with mean roof height =30 ft(9 1m) buildings with two stories or less framed with light frame construction and buildings two stories or less designed with flexible diaphragms need not be designed for the Torsional Load Cases (Note 5 of Figure 6 -10) Date Company Name Address City State File Location MECAWind Version 1 23 per ASCE 7 -05 Developed by MECA Enterprises Inc Copyright 2007 www mecaenterorises com 12/6/2007 Project No ZENOVIC ASSOCIATES INC Designed By 301 EAST 6TH STREET SUITE 1 Description PORT ANGELES Customer Name WA Proj Location C \Program Files \MECAWind \SampleProgram wnd Detailed Wind Load Design Basic Wind Speed(V) 100 00 mph Structural Category Natural Frequency Importance Factor Alpha At Am Cc Epsilon Slope of Roof RHt Ridge Height Ht Mean Roof Ht II 1 00 1 00 11 50 0 09 0 11 0 15 0 13 11 63 12 32 50 ft 24 75 ft Bldg Length Along Ridge 36 00 ft Gust Factor Category I Rigid Structures Simplified Method Gustl For Rigid Structures (Nat Freq >1 Hz) use 0 85 Gust Factor Category II Rigid Structures Complete Analysis Zm 0 6 *Ht lzm Cc*(33/Zm)A0 167 Lzm l *(Zm /33) ^Epsilon Q (1 /(1 +0 63 *((B +Ht) /Lzm) ^0 63)) ^0 5 Gust2 0 925 *((1 +1 7 *lzm *3 4 *Q) /(1 +1 7 *3 4 *lzm)) Figure 6 -6 External Pressure Coefficients Cp Loads on Main Wind -Force Resisting Systems(Method 2) 07289 SRH S F R LOG HOME KLEIN PORT ANGELES WA (Method 2) per ASCE 7 -05 Structure Type Building Exposure Category D Flexible Structure No Kd Directional Factor 0 85 Zg 700 00 ft Bt 1 07 Bm 0 80 1 650 00 ft Zmin 7 00 ft Slope of Roof(Theta) 44 09 Deg EHt Eave Height 17 00 ft Type of Roof Gabled Bldg Width Across Ridge= 28 00 ft 0 85 14 85 ft 0 17 588 25 ft 0 94 0 90 Gust Factor Summary Not a Flexible Structure use the Lessor of Gustl or Gust2 0 85 Figure 6 -5 Internal Pressure Coefficients for Buildings, GCpi GCPi Internal Pressure Coefficient -0 18 MWFRS -Wall Pressures Perpendicular to Ridge 32 50 30 00 20 00 15 00 Wall Leeward Walls -0 50 Side Walls -0 70 Elev Kz Kzt ft Roof Location Windward Min Cp Windward Max Cp Leeward Perp to Ridge Overhang Top (Windward) Overhang Top (Leeward) Overhang (Windward only) Wall 1 18 1 16 1 08 1 03 1 00 25 64 1 00 25 29 1 00 23 57 1 00 22 42 Cp GCpi(psf) GCpi(psf) CP CP 0 02 0 31 0 60 0 02 0 60 0 80 -14 80 -18 95 qz Windward Wall--- psf +GCpi -GCpi 13 04 12 79 11 62 10 84 GCpi(psf) MWFRS -Wall Pressures Parallel to Ridge GCpi(psf) 21 84 21 60 20 43 19 65 4 82 2 04 16 88 0 42 12 47 15 58 -5 99 -10 15 Total Shear Moment -GCpi Kip K -ft 27 83 27 59 26 42 25 64 Note 1) Total Leeward GCPi Windward GCPi 2) Shear and Moment are sum of forces (Leeward+Windard) acting on bldg GCpi(psf) 3 99 10 85 8 07 0 42 -12 47 15 58 GCpi(psf) 2 50 3 13 12 44 55 93 17 19 130 01 31 04 534 73 s� Leeward Walls -0 44 Side Walls -0 70 13 61 -4 80 18 95 -10 15 Elev Kz Kzt qz Windward Wall Total Shear Moment ft psf +GCpi -GCpi -GCpi Kip K -ft 32 50 1 18 1 00 25 64 13 04 30 00 1 16 1 00 25 29 12 79 20 00 1 08 1 00 23 57 11 62 15 00 1 03 1 00 22 42 10 84 21 84 26 64 1 87 2 33 21 60 26 40 9 26 41 63 20 43 25 23 12 79 96 75 19 65 24 45 23 06 397 61 Note 1) Total Leeward GCPi Windward GCPi 2) Shear and Moment are sum of forces (Leeward +Windard) acting on bldg Roof Dist from Windward Edge Cp +GCpi(psf) GCpi(psf) 0 0 ft to 12 4 ft 12 4 ft to 24 8 ft 24 8 ft to 36 0 ft 0 95 -24 20 0 83 -21 55 0 58 -16 36 -15 40 -12 75 -7 55 Main Wind Force Resisting System Transverse Direction Building GCpf +GCpi -GCpi qh Min P Max P Surface psf psf psf 1 0 56 0 18 -0 18 24 46 9 29 18 10 2 0 21 0 18 -0 18 24 46 0 73 9 54 3 -0 43 0 18 -0 18 24 46 -14 92 -6 12 4 -0 37 0 18 -0 18 24 46 -13 45 -4 65 5 -0 45 0 18 -0 18 24 46 -15 41 -6 60 6 -0 45 0 18 -0 18 24 46 -15 41 -6 60 1E 0 69 0 18 -0 18 24 46 12 47 21 28 2E 0 27 0 18 -0 18 24 46 2 20 11 01 3E -0 53 0 18 -0 18 24 46 -17 37 -8 56 4E -0 48 0 18 -0 18 24 46 -16 14 -7 34 1T 2 32 4 53 2T 0 18 2 38 3T -3 73 -1 53 4T -3 36 -1 16 Main Wind Force Resisting System Longitudinal Direction Building GCpf +GCpi -GCpi qh Min P Max P Surface psf psf psf 1 0 4 0 18 -0 18 24 46 5 38 14 19 2 -0 69 0 18 -0 18 24 46 -21 28 -12 47 3 -0 37 0 18 -0 18 24 46 -13 45 -4 65 4 -0 29 0 18 -0 18 24 46 -11 50 -2 69 5 -0 45 0 18 -0 18 24 46 -15 41 -6 60 6 -0 45 0 18 -0 18 24 46 -15 41 -6 60 1E 0 61 0 18 -0 18 24 46 10 52 19 32 2E -1 07 0 18 -0 18 24 46 -30 58 -21 77 3E -0 53 0 18 -0 18 24 46 -17 37 -8 56 4E -0 43 0 18 -0 18 24 46 -14 92 -6 12 1T 1 35 3 55 2T -5 32 -3 12 3T -3 36 -1 16 4T -2 87 -0 67 Notes 1) Min P qh (GCPf +GCpi)) Notes 2) Max P qh (GCPf GCpi)) Notes 3) For Torsional Load Cases the zones are designated with a T The pressures(Min P Max P) are 25% of the full design wind pressures(Ld Case 1T= 25 *1(id case 1) 2T=25%*2 3T =25% *3 4T= 25 *4) Exceptions to Torsional Load Cases One story buildings with mean roof height< =30 ft(9 lm) buildings with two stories or less framed with light frame construction and buildings two stories or less designed with flexible diaphragms need not be designed for the Torsional Load Cases (Note 5 of Figure 6 -10)