Loading...
HomeMy WebLinkAbout101 Fields Dr Technical - BuildingTECHNICAL Permit 0 (6,- 22`' Address 01 R Dr Project description MOO SF PAdc, J o vetr 1 avq$ Co nd-a4h e Date the permit was finaled io Number of technical pages 52- Fo.iovt‘c. Rif Cover -All Building Systems Legend Building Series 30' Span ASCE7 -05 Site Specific Structural Evaluation SO #83706 Frame Spacing 10' NUV 0 7 7007 °NAL rf I EXPIRES 2 -I3 -o November 2007 Legend Building Series 30' Span Site Specific American Structural Evaluation 10 foot Frame Spacing Evaluation Summary This evaluation covers a Legend Series Building 30' in span with frames spaced at 10' on center The structure is intended to be used as permanent, stand alone and fully enclosed. The structure is designed for the loads listed below in accordance with the American Society of Civil Engineers. Minimum Design Loads for Buildings and Other Structures (ASCE7 -05) Any deviation outside the criteria listed below is subject to review by the Professional Engineer for that specific project. Site Live Load Criteria Minimum Uniform Live Load. 12.0 psf Site Snow Load Criteria. Ground Snow Load Flat Roof Snow Load Building Category' Wind Exposure Site Wind Load Criteria Wind Speed (3 second Gust) Exposure Category Building Category Basic Wind Pressure Enclosure At Anchor Pin: Load Case Dead Collateral. Live Snow Balanced Snow Unbalanced Wind. Perpendicular Wind Parallel At Endwall Column Base: Load Case Wind Parallel Legend Building Series Side A (kips) Horizontal Vertical 0.07 0 16 0 02 0.04 0.97 1 64 1 70 2.57 0.90 0 77 0 04 1 11 -0.59 1 14 0.3 (kips) 33.1 psf 25 0 psf Standard Fully Exposed 96 mph C Standard 17.6 psf 17 6 elevation Fully Enclosed Base Reactions (Unfactored) The maximum forces at the foundation /supports due to the site loads listed above are as follows. Side B (kips) Horizontal Vertical -0 07 0.16 -0 02 0.04 -0.97 1 64 1 70 2.57 -0.90 2.30 1 64 -0.65 -0 17 1.35 add -0.3 (kips) at the tension anchor (gridlines 2 4) Cover All Building Systems Allowable Hanging Loads on Frames (Collateral) Hung loads have been assumed to be less than 0.25psf (approximately 75 pounds distributed along the frame) Additional load will reduce the snow and live load capacities accordingly ASCE 7 -05 Cover All Building Systems Table of Contents Evaluation Summary Table of Contents Part 1 Introduction 1 Part 2. Section Material Properties 2 Part 2.1 Steel Components 2 Part 2.2 Fabric 2 Part 3 Load Calculations 3 Part 3 1 Load Assumptions 3 Part 3.2 General Load Cases Load Combinations 4 Part 3 3 ASCE7 -05 Roof Snow Loads 5 Part 3 4 ASCE7 -05 Wind Loads 6 Part 4 Structural Calculations 7 Part 4 1 Overview 7 Part 4 2. Primary Structural Elements 8 Part 4.3 Secondary Structural Elements 15 Part 4 4 Connections. 19 Appendix A Drawings Diagrams I Appendix B STAAD Pro Results II Legend Building Series ASCE7 -05 Cover All Building Systems Part 1 Introduction The Legend Building Series 30' span is constructed of portal frame plane trusses manufactured of steel pipe. These frames are braced and stabilized using purlins and cables, truss section and material properties are listed in Part 2 of this report. Frames are mounted to a foundation by anchor bolts, both designed by others. Profile and plan views of the buildings bracing layout are provided in Appendix A. The frames are covered with pre- stressed fabric cladding The fabric is attached to the end arches on the outer chord of the frame and tensioned to the base through winches. The fabric is tensioned with a pre stress of -50pIf This building is classified as a permanent structure. Loading information and calculations are provided in Part 3 of this report with loading diagrams provided in Appendix A. Verification of the structural capacities for building components is provided in Part 4 Legend Building Series ASCE7 -05 1 0 Part 2 Section Material Properties Material distribution is as per the following Part 2.1 Steel Components Outer Chord Inner Chord Web End Bay Purlins Common Bay Purhns Cross Cables 1 2 3/8' Dia. x 0 083 1 55ksi 1 2 3/8' Dia x 0 083 1 55ksi 1 1 Dia x 0 083 ear 2 7/8' Dia x 0 083 (<16 bay) 1 2 7/8 Dia. x 0 083 1 55ksi 1 5/16 Dia. 1 Part 2.2 Fabric Dura-weave 2400 Strip Tensile Modulus (EA) of 1100 pounds (per inch of width) Cover All Building Systems 55ksi 50kSI -2*.antar (Note Trusses have a center-to-center depth between chords of 12 inches) Legend Building Series ASCE7-05 2 Part 3 Load Calculations Cover All Building Systems Part 3.1 Load Assumptions A typical interior frame spaced 10 on center was considered in determining load case analysis and the capacity is calculated accordingly Design loads are determined in accordance with the American Society of Civil Engineers standard (ASCE7 -05) Basic loads consist of the following pre stress, dead load, roof live loads, snow loads, wind loads and seismic loads as described below Loading diagrams are provided in Appendix A. Part 3.1.1 Pre stress The fabric cladding is tensioned with a pre stress of approximately 50plf in both the warp and fill directions Part 3.1.2 Dead Load The dead load is the actual material weight plus 0 25psf collateral load (approximately 75 lbs distributed along the inner chord of each frame.) This collateral load is not applied in combination with wind loads as it provides additional resistance to uplift and over turning. Part 3.1.3 Roof Live Loads Minimum roof hve loads are determined in accordance with Chapter 4 (Live Loads) of ASCE7 -05 Part 3.1.4 Snow Loads Roof snow loads are determined in accordance with Chapter 7 (Snow Loads) of ASCE7 -05 Part 3.1.5 Wind Loads Wind loads are determined in accordance with Chapter 6 (Wind Loads) of ASCE7 -05 Part 3.1.6 Seismic Loads These structures are extremely lightweight and flexible For these structures wind Loads typically govern over seismic forces. Detailed seismic load calculations are performed for site specific analysis Legend Building Series ASCE7 -05 3 Part 3.2 General Load Cases Load Combinations Part 3.2.1 General Load Cases 1 DL Dead Load 2 CL Collateral Load 3 LL Roof Live Load 4 SL Uniform Snow Load 5 USL Unbalanced Snow Load 6 Perp WL Wind Load Perpendicular to Ridge 7 Par WL Wind Load Parallel to Ridge Part 3.2.2 Load Combinations LC 1 1 2 (DL CL) 1 6LL LC 2. 1.2(DL CL) 1 6SL LC 3 1 2(DL CL) 1 6USL LC -4 0 9DL 1 6Perp WL LC 5 0 9DL l 6Par WL Legend Building Series Cover All Building Systems ASCE7 -05 4 Part 3.3 ASCE 7 -05 Curved Roof Snow Loads (ASCE 7 -05 Sectt 7.0) Ground Snow, p Exposure Category 1 Building Category 1 33.1 psf C Fully Exposed 11 Standard Bay Spacing 1 10 ft Slope at Eaves 1 53 Building Enclosure 1 III Fully Enclosed (Ct =1.2) Basic Snow Load Factor Ch Exposure Factor C Thermal Factor C, Importance Factor. 1 Flat Roof Snow p Slope Factor C, 1 0.7 1 0.9 1.2 1.00 25.02 psf 1.0 (alpha 15)/55 3 1.00 12 1.00 22 0.87 32 0.69 42 0.51 53 0.31 70+ 0.00 Legend Building Senes 25.02 25.02 21.84 17.29 12.74 7 73 0.00 250.2 250.2 218.4 172.9 1274 77.3 0.0 Case I Slope at 30` Balanced Load Unbaan ea Load Case 2 Slopc tics 30' to 70' Balanced Load Ea Unbalanced Load T 7 Ea 30° Po nt #?.Gel Snow Load at Crown Snow Load at 30 Snow Load at Eave 3 1.00 12 1.00 22 0.87 32 0.69 42 0.51 53 0.31 70+ 0.00 Porte of root wear C. 1.0 horn Frgu 7.2 (may include enti roof) Ea Wind Ea 30° Pont Wind tt4 0.5 q Crown C.5 q Crown Portion of 01 whe C, 1.0 from Ft 7 -2 Crown Crow rown 30 Pan 10.64 18.55 27.34 32.66 24.06 14.61 0.00 30° Fan? Cover All Building Systems Ea Ea q C. A C. 0 2 p. C,'/ C. AC. 0 Ea 2p,C, 2 p. C,'/ C, 0 Ea Case 2 12.51 psf 40.44 psf 1 17 19 psf 106.4 185.5 273 4 326.6 240.6 146.1 0.0 ASCE 7 -05 5 Part 3 4 ASCE 7-05 Wind Loads (ASCE 7-05 Se 6.5) KRW16405/001/VM., Basic Wind Speed, V Exposure Category Building Category Mean Roof Height, h Width, W Length, L Rise-to-Span Ratio. r Bay Spacing Building Enclosure Gust Effect Factor, G 1 4 Directionality Factor. Kd Importance Factor 1 Wind Pressure, q Direction of MWFRS Being Designed 14Zt7,2 1/2 1 1 0.70 I 2 1 -0.60 1 3 1 -0.43 I 1 0 1 Legend Building Senes 96.0 mph C Fully Exposed II Standard 17.6 ft 30 ft 40 ft 0.59 10 ft 111 Fully Enclosed (Ct=1 0.85 ihr41,Z.WX:X5WilgKE_ Velocity Exposure Coefficient. K, I 0.88 Topographic Factor K, 1 1.00 0.85 1.00 17.6 psf 1/4 12 29 10.48 I 7.48 1 0.00 1 ASCE 7-05 2 3 4 5 6 7 0.82 -0.70 -0.50 -0.90 -0.50 -0.30 0.40 0.00 0.00 0.00 13.47 7 48 -4.49 5 99 0.00 0.00 0.00 All 1 0.00 1 Alt 1 0.00 1 0.00 0.00 :.:4 4 12.29 10.48 7 48 Cover All Building Systems 122.9 4 1 -0.77 .1 13.47 1 104.8 5 1 -043 1 7 48 1 74.8 6 1 -0.26 1 -4 49 1 0.0 1 0.00 1 0.00 122.9 104.8 74.8 134.7 74.8 -44.9 59.9 0.0 0.0 0.0 0.0 0.0 134.7 74.8 -44.9 0.0 '''""k7t 6 Part 41.2 Secondary Structural Elements Fabric and bracing calculations are provided in Part 43 below Part 4 1.3 Connections Connection design calculations are provided in Part 4 4 below Legend Building Series Cover All Building Systems Part 4 Structural Calculations Part 4 1 Overview Part 4.1.1 Primary Structural Elements The Cover All Building System s portal truss frame is modeled as an assemblage of chord and diagonal elements. Appropriate member properties are assigned to the members as well as the boundary conditions and loads. Releases are set to simulate zero moment condition where appropriate, such as diagonals and kingpins. Anchors are modeled as pins and the reactions are at the pm. Finite element analysis was performed on the commercially available computer program STAAD Pro A summary of the analysis results is provided in Part 4 2 below Part 4.1.4 Graphical Results STAAD Pro Output Graphical results mcludmg structural loading and axial force diagrams are provided in Appendix A. A complete listing of the FEA results is provided in Appendix B ASCE7 -05 7 Part 4.2 Primary Structural Elements Part 4.2.1 Portal Frame Truss Tube Capacities Legend Building Series 2.375 2.375 2.375 E 29000 ksi 0.083 (1.083 0.083 0.083 0.083 Notes. 1 Chord tension capacity is governed by the churd to coupler weld capacity (See Part 4 4.1) 2 Web tension capacity is governed by the web to chord weld capacity (See Part 4 4 2) 61 61 61 61 55 35.2 35.2 33 7 33.7 20.0 35.2 35.2 33.7 33.7 0.50 0.50 0.50 0.50 1.00 Cover All Building Systems ASCE 7 -05 8 4.2.2 Portal Frame Truss Stress Ratio Summary .1* 1, 1 %PP .W.041.,;1".11..Aiv'Eekti Stress Ratio Stress Ratio Stress Ratio kleAki.4 'Outer Chord (at coupler) 2 'Outer Chord 3 !Inner Chord (at coupler) 4 !Inner Chord 5 I Web Legend Building Series 10% II% 9% 10°/0 7% (Note. A complete listing of element forces and stress ratios is provided in Appendix B) 29% 22% 24% 30% 29% 9% 34% 9% 25% 25% 12% 32% 13% 12% 38% Cover-All Building Systems It 4,1 f *Os ,,tilt411* t k::•■:' k r "'A I, 1 ,v 4 t Stress Ratio Stress Ratio •s• ev: wo 6% 12% 6% 6% 9% ASCE 7-05 9 1.2(DL CL) 1 6LL 1.2(DL CL) 1 6SL 1.2(DL CL) 1 6USL 0.9DL 1.6Perp. WL 0 9DL 1.6Par WL 1 1 1 1 1 1 1 d 1 1 1 Part 4.2.3 Base Reactions Summary Path: O: \Sales Orders \83000 \83700 \83706 LBS30s40@ 10 WRS (EDEN EXCAVATLNGMnalysis\FEA\LBS12 30' s Lower Load Case Upper Load Case Start Row o dear i (DL CL) LL (DL CL) SL (DL CL) USL DL Perp. WL DL Par WL 0 0 0 0 0 0 0 0 0 0 0 0 Legend Building Series 8 17 53 107 1.80 1.00 1.57 -0.52 1 67 2.84 1.56 2.55 -0.88 1.84 2 77 2.50 -0 95 1 19 2.87 4.35 3 92 1 64 2.02 0 00 0.00 0.00 0.00 0 00 0 00 0.00 0.00 0 00 0 00 0.00 0 00 0.00 0 00 0 00 triorimok „.44w 0 00 0 00 0 00 0 00 0 00 8 1.07 1.84 0 00 0.00 1 0 00 1 0.00 9 1.80 2.77 0 00 0 00 1 0 00 1 0.00 10 1.00 0 97 0.00 0 00 0 00 0 00 11 0 12 -0.95 0 00 0 00 0 00 0.00 12 -0.52 -0.98 0.00 0.00 0.00 0 00 13 1.67 2.87 0 00 0 00 0 00 0.00 14 2.84 4.35 0 00 0 00 0 00 0 00 15 1.56 148 1 0.00 0.00 0.00 0.00 16 0 13 1 64 1 0 00 0 00 0 00 0 00 17 -0.88 1.68 1 0 00 0.00 0.00 0 00 33 0 1 8 1.07 1.84 0.00 1 0.00 0.00 0.00 33 0 9 180 2.77 0.00 1 0.00 0.00 0.00 33 0 10 1.00 2.50 0.00 1 0.00 0.00 0.00 33 0 11 1.57 -0 49 0.00 0 00 0 00 0.00 33 0 12 -0.24 1 19 0.00 0.00 0.00 0 00 33 0 0 33 0 13 1.67 2.87 0.00 0.00 0.00 0.00 33 0 14 2.84 4.35 0 00 0.00 0.00 0 00 c 33 0 15 1.56 3.92 0 00 0.00 0.00 0.00 a 33 0 16 2.55 -0 89 0 00 0 00 0.00 0 00 i-T-■ 33 0 17 -0.34 2.02 0.00 0.00 0.00 0 00 33 0 0 Cover All Building Systems 0.00 0.00 0 00 0 00 0 00 0.00 0.00 0 00 0.00 0.00 0 00 0.00 0.00 0 00 0 00 0.00 0 00 0.00 0.00 0 00 ASCE 7 -05 10 N td 3 c c w Part 4.2.4 End Wall Verticals Wind Pressure Calculations: Code Used: ascE7 -05 (2 Ends) v Importance Category standard Basic Wind Pressure: (psf) 17.60 Pressure Coefficient: 0.40 Exposure Factor Not Required Load Factor 1.60 Importance Factor Not Required Factored Applied Pressure: (psf) 11.26 Windpost Description: Moment Applied Height: (in) Trib. Width: Width: (in) Depth: (in) Thickness: (in) Fy (ks') Capacity Moment (in) (in *kips) (in *kips) w Windpost Endwall 1 Q End 1 symemcal, only 1/2 ntered Number of Braced Bays:1',. Tension Anchor Moment (in *kips) ECI 30 0 0 0 Unfactored Tension Anchor Force: (kips) 0.3 Purlin Cross Cable Calculations: Endwall 1 Unfactored Force: Sum of Windpost Reactions (kips) 1 0.33 Maximum 'Leg Purlin Force (kips)I 0.33 Maximum 'Leg Cable Force (kips)1 0.43 Maximum Purlin Force (kips) 1 0.60 Endwall 2 Unfactored Forces Sum of Windpost Reactions (kips) 1 0.33 Maximum 'Leg Purlin Force (kips)I 0.33 Maximum 'Leg Cable Force (kips) 0.43 Maximum Purlin Force (kips) 1 0.60 Tension Anchor Calculations: Building Properties: Building Average Height: (ft) 1 Bay Spacing: (ft) 1 .10: Building Leg Height: (ft) 1 8.7 Steel Properties: E: (ksi) 1 .29000 11 Endwall 2 End 1 symetrical, my 1/2 ntered Number of Braced Bays:1. "1 Tension Anchor Windpost Moment (in kips) ECI 1 30 0 0 0 Unfactored Tension Anchor Force: (kips) 0.3 12 12 Stress Ratio: 10% 1 0.5 10% Cover All Building Systems Factored Base Unfactored Reaction: (kips) Base Reaction: (kips) 0.5 0.3 0.3 Maximum Unfactored Deflection (in) 0.1 0.1 Legend Building Series ASCE 7 -05 11 Part 4.2.5 Outer Truss Chords Check the outer truss chords for combined axial and bending loads due to the honzontal fabric load. Applied Loads: l 7.5ft Check Capacity of Outer Chord for Combined Axial and Bending Loads: The outer truss chord is not expected to carry the full fabric load horizontally One half of the load is expected to be shed directly to the end support purhn Capacities of Outer Truss Chord Compressive capacity of outer truss chord, Pan 4.2. Tensile capacity of outer truss chord, Pan 4 2 1 Bending capacity of 2.375' trusschord. Part 4.2.1 Applied Loads due to Live Load Applied axial.load in outer truss chord due to Live LoadAppendix B Applied bending load in outer truss chord due to Live Load. Appendix B 2 0 W fabric.L� l u M ux P u M uY 12 M ux 2 Pu 2 M uy 8.63 kip -in Check Stress Ratio: Pu 8 'Muy Mux 040 0 okay (1)P 9 I1M n WTI Applied Loads due to Snow Load: Applied axial load in outer truss chord due to Slow Loads, Appendix B Applied bending load in outer truss chord due to Snow Loads, Appendix B M y 0.5 wfabric.SL)-lu 12 M 21.81 kip•in Check Stress Ratio: Unsupported length of outer truss chord. 2 M ux P u 8 /M +M 0.98 1 0. okay O 9 04 n VM n Legend Building Series Maximum factored horizontal fabric load due to Live Loads. Part 4.3.1 Maximum factored horizontal fabric load due to Snow Loads, Part 4.3 1 Maximum factored horizontal fabric load due to Wind Loads, Part 4.3 1 M ux P u P 2 2 Cover All Building Systems ASCE 7 -05 12 Applied Loads due to Wind Load: Applied axial load in outer truss chord due to W ine oads, Appendix B Applied bending load in outer truss chord due to Wind Loads, Appendix B 2 (0.5 w fabnc.WL1 tu Mux P Pu Muy'= 12 M ux 2 u 2 M 9.99kip•in Check Stress Ratio: Pu 8 Muy Mux 0.60 4P nT 9 n n Legend Building Series 1.0 okay Cover All Building Systems ASCE 7 -05 13 Part 4.2.6: Truss Chord Unsupported Lengths The tension chord can work to stop the buckling of the compression chord between purlins. Check that the web connection is capable of resisting the moment generated by the buckling force. Buckling Force: Maximum compressive capacity of truss chords, Part 4.2.1 1 17.5in Length of web between weld points P 0.01 e P br 0.31 kip Buckling force Resulting Moment: P br 1 M 2 M 2.74 kip -in Resulting Force on Weld. M t y 1.3in t 2.11 kip Weld Capacity. 41 075 F 70ksi D 0.25in L 0 75in Check Bending in Web: M 2 M 1.37 kip -in (M 3 15kip in 4 4\ rt D o Di Z, „16 Do Legend Building Series OR -0.6 (0 707 D) L Fxx c4R 4 18 kip t weld is adequate Check Torsional Shear Stress in Chord. D 2.375in Outer chord diameter D 2.209in Inner chord diameter Mu. web is adequate Polar section modulus Cover All Building Systems ASCE 7 -05 14 T M T 2.74kip•in T Z 4 l4 ksi T all 0.4 50ksi T all 20 00 ksi Legend Building Series Applied torque Cover All Building Systems 0.21 1 0. chord is okay T all Therefore the tension chord is effective in preventing the compression chord from buckling. Where there are 2 or more weld points between purlins the effective length will be reduced when calculating the chords compressive capacity ASCE 7 -05 15 Part 4.3 Secondary Structural Elements Part 4.3.1 Fabric Tension Bay Spacing Fabric Modulus EA Pretension P Prestress Distance L Fabric Tensile Strength (plf) Seam Tensile Strength (plf) Unfactored Distributed Load (psf) Load Factor Distributed Load W (psf) Vertical Force F (plf) Radius R (ft) Tension T (plf) Fabric Edge Angle Alpha (deg) Horizontal Force F (plf) Sag s (ft) Final Length Lt (ft) Fabric Tensile Factor of Safety Seam Tensile Factor of Safety Iterative Radius R, (ft) Iterative Tension A TA, (pif) Iterative Tension B TB; (plf) Iterative Check Variable (plf) Calculate Legend Building Senes 12.00 1.6 19.20 96 16.75 321 60 17.37 306.94 0 76 10 15 14.3 104 16.75 321.60 251.24 0 1568 10 ft 13000 plf 50 plf 0.038 ft 2880 plf 2100 plf 25 02 1.6 40 03 200 16 14 62 585.27 20 00 549.98 0.88 10.21 79 57 14 62 585.27 317 77 0 4907 Note: Distributed Loads are based on the highest average pressure applied by that specific load case to a frame section braced by an end support purlin. ASCE 7 05 32.66 1.6 52.26 261.28 15 66 818.33 18.62 775.50 0.82 10 18 56 41 15.66 818.33 281 67 0 6364 12.29 1.6 19.66 98.32 18 72 368 11 15 49 354.74 0.68 10 12 12.5 91 18 72 368 11 209 75 0.3298 Cover All Building Systems 13 47 1.6 21.55 107 76 17.22 371 13 16.88 355.14 0 74 10 15 12.4 91 17.22 371 13 239 97 0 1429 16 Part 4.3.2 Purlin Capacities Purlin and Bolt Properties Bolt Grat1 She Thr 4111 In Shear Threads ItPkg Allied Tube 1 55 1 60 Allied Tube 1" KI 5" 7gu 8ga 1 50 1 55 44W Steel 1 44 1 65 Purlin Bolt Capacities saketnothmoopaAwarwtK%44:_, Bolt Di ete 4 0.625 11 Tube Thick: t 1 0.083 h Tube Y eld Sir igth Fy 1 55 lks Tube Ulti Lae Sir imh Fu 1 60 lks Edge Distance .004) 1 in Edge Distanse 2 1 1 250 1 in Nui fiber of Bolts 1 Strength per Unit Area Fn Bolt Ar Ab Shea Strength per Bolt fat Bearing Strength I (0.50 Bearing Strength 2 1 14.01 kips Bearing Strength per Bolt 1 10.50 lkips Ir *1(1*Mt0ttl&K ns ialtati 0.21 kips Sh Rupture Btu .k Shear Rupp I Black Shear Rupture RIO( Shear Rupture Used Ruptu Sticngth Used Compressive Capacity 21.0 kips 18.7 lkips Tensile Capinitv ;714nilirefrr''',41,1) A325 48 6(1 A 48 0.31 11.04 11.21 9.34 9.34 9.34 9.34 Legend Budding Series 1 64) 1 lanhX6'&1 ksi lkips kips kips kips kips kips 75 Factored Purlin Capacity Summary kl 2.875 1 (1.1)83 IMO 120 (Dell Purlin Tube Capacity ED,C Steel Y'eld Str 1gth Fy Modulo of Elasticity E Lq111 Outside ele Wall Thickness Inside Diameter Ar M0111 11 rti Seca Modulo Radius of Gyration Plait ie Modulus End Fi ity Facto K Mi Radi of Gyrati Unsupnored Length lu Panel Point Length In Applied Distributed Load egati down) Radius (o NA) Detlectioi du to Radius Consider Weight Weight Total Distributed Loads (Applied Weight) Deflection due to Total Distributed Loads Moment due to Distributed Load Pdelta Mo nt T nal Moments 02° 0.7101i ^4 0.49411 ^3 11.988 In 0.647 110 Slelide V alal q 1 144 36 ASCE 7-05 0.9881inche (20.00 !inches 120.001inehes 0 1pir na !inches 0.001! che n1 0.001pli 0.00 p1! 0.001 inches 0.1101kiein 0.001kip* 0.001kie'n 121 5 OK 0.625 90 55 ks Lal 'lib& 1 351 290001ks' rieleNeMs1Witedtion'altigatierre&W&le&W:ai611(141031/410106:101N Allowable Pure Tensile Load 1 361kins /.1375 1 Pi .,...,a1,,.$,. -4•.: &Wu' It....:.:' 8 Au4np o10»5 4 Lambda r Lambda e thickn cducti fi snor Q Q/ Q2 Allowable Stress Rs A111.1 1,10 Sir I P rl Allowable Str Fi 7 Allowable Pure As al Load Lambda u Lambda r M1 Used Ph 01 Mn Co ip c4 Mn Nun-Compact Mn Dchitl Siren th Tbeithi Allowable Compressive Load given Moments Allowable Tensile Load given Moments CO 11)1 Shea Ruti Tr i)c Sire Rati Max. al 21.0 intEL Cover All Bulding Systems Nn 18.7 60.109 1.684 1.0001 11 17.11001(0 i 16.773 IL./ 17.1)4101ks 11.139 kips 37.647 162,9271 35.596 !kip' 35.5961kip* n I nulkiv*In 32.041ki *in 11.1 kips 36.011ons 1.01 1.111 1.01 17 Part 4.3.3• End Support Purlins Applied Loads: l 7.5ft Check Capacity of End Support Purlins: Applied Loads: `"'fabric.L l u l u, '5.82 Factored load applied to purlin due to Live /Snow Loads P u ,2 66 ki p Factored load applied to purlin due to Wind Loads. P u Maximum factored horizontal fabric Toad due to Live /Snow Loads, Part 4.3.1 Maximum factored horizontal fabric load due to Wind Loads, Pan 4.3 1 Unsupported length of outer truss chord. Purlin Capacity End support purlins are 02 7/8' 14ga Minimum compressive capacity olpurlin, Pan 4.3.2 Check Stress Ratio: P '0.521 J 1.0, end support purlins are adequate. 4n ,0.24 Part 4.3.4 End Bay Purlins Applied Load: Maximum end bay purlin load, Pan 4.2 4 Purlin Capacity- End bay purlins are 02 7/8 14ga Minimum compressive capacity otpurlin. Pan 4.3.2 Check Stress Ratio: P u 0.05 1.0. therefore end bay purlins are adequate. 4P n Legend Building Series Cover All Building Systems ASCE 7 -05 18 Part 4.3.5 Common Bay Purlins Applied Load. Common bay purlins are designed to brace both the inner and outer chords of the truss from buckling. Maximum compressive capacity of the truss chords. Part 4.2.1 Pb 0.01 4/P P 0.31 kip Required bracing strength per unbraced bay n 7 Maximum number of unbraced bays Purlin Capacity Common bay purlins are .2 7/8' 14ga Compressive capacity of common bay purlin, Pan 4.3.2 Check Stress Ratio: n P br 0.20 1 0 therefore common bay purlins are 4)Pn adequate Part 4.3.6 Cross Cables Applied Load: Maximum cross cable load from common bays Cable Capacity S 9 Nominal strength of45/16 cable assembly(Cable assembly is manufactured to meet a minimum breaking strength of 9.8kip) 0.95 Fitting reduction factor Sd 4f.Sn S 9.31 kip Design Strength of05 /16' cable assembly Check Stress Ratio: W 2. 0 Load factor aw Tmax 0 47 1 0 therefore cable assemble is adequate. Sd (Note: Cable assembly Includes cable, turnbuckle, shackle and tab Cover All Building Systems Legend Building Series ASCE 7 -05 19 Part 4 4 Connections Part 4.4.1 Truss Coupler Connection Coupler Weld Capacity. Given: 6 0.60 Weld resistance factor F 60ksi Tensile strength of chord material F 70ksi Strenght of filler metal tchord 0.083in Chord thickness tplate 0.375in Coupler plate thickness D 0.25in Weld leg size Louter 6.Oin Length of weld at outer chord connection 7.5 m Length of weld at inner chord connection Ltnner tmin min t chord t plate) t min 0 083 to Capacity of Fillet Weld. 4R n 2 4 19.06 23.82 Check Capacity of Coupler Bolts: Applied Load Tcap r ut r 11.91 kip Legend Building Series 1.063 4' t rim) L outer Fu if tmin 0 150m 1.063 4w 0 75 (0 707 D) L outer Fxx if t mtn 0 150in 1 063 4' t min Ltnner F if tmtn 0 150in 1.063 Qw 0 75 (0 707 D) L ynner Fxx if t rain 0 150in Cover All Building Systems O 0 0 Outer chord weld capacity (Note. Weld capacity governs the chords tensile k111 Inner chord weld capacity capacity at the location of the couplers) Maximum tension capacity of truss chords at coupler location. determined above. Number of bolts per connection. $r 20 7kip Design tensile strength of one55 /8' A325 (Grade 5) bolt. r ut 0.58 1.0 coupler bolts are adequate. O ASCE 7 -05 20 Check Plate Thickness: Determine the minimum plate thickness required to ensure acceptable combination of plate strength, stiffness. and bolt strength. Given. a 0.875in b .39in p 2.4466in d 0.625in Bolt diameter dh 0 6875 in Hole diameter F 44kst Calculated. d bprime b 2, b prime 0.08 in b prime P a prtme p =0.09 (3 =7.92 Minimum Plate Thickness: d 2.0in b•d Z 4 Legend Building Series Distance from bolt centerline to edge of plate Distance from bolt centerline to plane of bending Tributary length per pair of bolts Yield strength of plate material 1 e P rut 4 44• r ut b prime t min p•F (i 0 5.aprime) t min 0.368 in 3/8 plate is adequate. Width of coupler plate dh dh d E 1 aprime. =min a+ 1.25b+ p 2 2 i_ 5 0 72 a prtme 0.83 in Check that Coupler Plate is Adequate to Brace the Outer and Inner Chords from Buckling. Determine Plastic Modulus of Coupler Plate b 0.375in Thickness of coupler plate 3 Z 0.38 in Plastic Modulus of coupler plate Determine Required Plastic Modulus: 3/8 Plate cD 0 k) Pb 0.01 P cap Pb 0.31 kip Maximum buckling force of truss chords a prtme a prime 1.00 Maximum Compression Capacity of Truss Chords 1.0 if (3? 1.0 1 (3 min l S RJ_ l Cover All Building Systems otherwise p ASCE 7 -05 21 0.9 Resistance factor F 44.00 ksi Yield strength of plate material 1 6.0in Moment arm P l Zreq F v Z ieq 0.05 in Z req 0 13 1 0 Coupler plates are adequate Z Part 4.4.2 Web Connection Given: 0.75 Weld resistance factor F 70ksi Strength of filler metal D 0.25in Weld leg size L 1.5 in Length of weld Capacity of Weld 4R OW 0.6 (0 707 D) L Fxx (I)R 8.35 kip Web weld capacity (Note Weld capacity governs the webs tensile capacity) Part 4.4.3 Kingpin Plates Check that Kingpin Plate is Adequate to Brace the Outer and Inner Chords from Buckling Determine Plastic Modulus of Kingpin Plate: b 0.25in d 2.50in b•d Z.= 4 P br 0.31 ki p 0.9 F 44.0 ksi 1 =6.Oin Thickness of kingpin plate Width of kingpin plate Z 0.3 i Plastic Modulus of coupler plate Determine Required Plastic Modulus: t) 0 Q Maximum buckling force of truss chords Resistance factor Yield strength of plate material Moment arm 2 1/2 Cover All Building Systems 11 1 /4 Plote (.0 IL. 1. d Legend Buildmg Series ASCE 7 -05 22 P br 1 Z1eq F Z req 0.05 in Z req =012 Z Check Kingpin Pur Connection. Determine Shear Rupture Strength: 075 F 65ksi w 2.5in t 0.25in d 0.6875 in Hole diameter A 4 (0.5 w) t A 1.25 in 1.0. Kingpin plates are adequate Resistance factor Tensile strength of plate material Width of kingpin plate Thickness of kingpin plate Shear Rupture Strength OR $•0.6 F A OR 36.56 kip Maximum tension capacity of purlin (18.7kip), therefore okay Determine Block Shear Strength 0 75 Resistance factor F y 44 0 ksi Yield strength of plate material F 65 0 ksi Tensile strength of plate material t 0.25 in Thickness of kingpin plate dh 0.6875 in Hole diameter Gross and Net Areas in Shear and Tension. A (2.75in) t A (2.75in d Block Shear Strength: F A 33.52 kip (lR 37.51 kip Gross tension.area Net tension area 011/16 0.6-F A 17.67 kip Cover All Building Systems A 2 (1.25in) t A 2 (1.25in 0.5 d t Net shear area OR $•min[_(0.6 F A (F A (0.6-Fu A ny) (Fu Ant)] if Ant) (0.6 F A 4'•min[_(0.6.F A (F A (0.6.F A (F A otherwise Maximum tension capacity of purlin (18.7kip). therefore okay Gross shear area Legend Building Series ASCE 7 -05 23 Determine Bearing Strength: 0.75 F 65.0 ksi t 0.250 in db 0.625in dh 0.6875 in L 1.25in 0.5 d Clear distance from edge of hole to edge of plate Bearing Strength. tpR 21t•min[(1.5 L t F (3.0 d t F 0R 33 13 kip Maximum tension capacity of purhn (18 7kip), therefore okay Check Kingpin Cross Cable Connection. Determine Shear Rupture Strength: 0 0 75 F 65ksi w 2.5in t 0.25in d 0.6875in A 2(0.5w)t A 0.63 in Determine Bearing Strength: 0.75 F 65.0 ksi t 0.250 in d 0.625in d 0.6875 in Legend Building Senes Resistance factor Tensile strength of plate material Thickness of kingpin plate Bolt diameter Hole diameter Resistance factor Tensile strength of plate material Width of kingpin plate Thickness of kingpin plate Hole diameter Resistance factor Tensile strength of plate material Thickness of kingpin plate Bolt diameter Hole diameter 9 011/16 J CR055 d CONNECT N POINT -rtf 1 1/4 2 1/2' Cover All Building Systems Shear Rupture Strength. $R 4t•0.6 -F A 0R 18.28 kip Minimum breaking strength of cable assembly (9 8kip). therefore okay L 1.25in 0.5 •d Clear distance from edge of hole to edge of plate Bearing Strength OR 0•min[(1.5 L t F (3.0-d t F 0R 16.57 kip Minimum breaking strength of cable assembly (9.8kip), therefore okay ASCE 7 -05 24 Check Kingpin Weld Capacity- Given: 0 75 Weld resistance factor F 70ksi Strength of filler metal D 0.25in Weld leg size L'= 3.3in Length of weld Capacity of Fillet Weld 4R O ((1707 D) L Fxx (1)R 18.37 kip Kingpin weld Maximum tension capacity of purlin (18 7kip), therefore okay capacity Part 4.4.4 Base Plate Base Plate Weld Capacity. Given. 0.60 Weld resistance factor F 60ksi Tensile strength of chord material 70ksi Strenght of filler metal F tchord 0.083in Chord thickness t plate 0.375in Coupler plate thickness D 0.25in Weld leg size )-'outer 6.0in Length of weld at outer chord connection L innet 7.5in Length of weld at inner chord connection t rain min t chord t plate) t rain 0.083 in Capacity of Fillet Weld. Legend Buildmg Series 1.063 T w t min Louter F 'f t ram 0 150in 1.063 4 75 (0 707 D) L outer F xx if t rain 0 150in 1 063 6u, t min Linnet F if t 0 150in 1.063.6, 075 (0.707 D) inner Fxx if tmin> 0 150in Cover All Buildmg Systems 19.06 Outer chord weld capacity (Note: Weld capacity governs the chords tensile 6R° 23 82, kip Inner chord weld capacity capacity at the location of the base plate) ASCE 7 -05 25 Check Base Plate in Bearing: Determine Bearing Strength: 4, 0 75 Resistance factor F 65ksi Tensile strength of plate material t 0.1875 in Thickness of plate d 0.625in Anchor diameter dh 0.6875 in Hole diameter L c 1. Oin 0.5 d Clear distance from edge of hole to edge of plate Bearing Strength. 4)12 2 [4,- min[(1.5 L t F (3 0 d t F 012 18 00 kip Maximum horizontal base reacion therefore okay Part 4.4.5 End Wall Vertical Connections Top Connection: Check Critical Weld Capacity O 0 75 F 70.0 ksi D 0.25in L 1 Oin 012 O 0.6 (0 707 D) L Fxx 012n 5.57 kip Maximum honzonta] reacion, therefore okay Bottom Connection: Check Base Angle in Bearing: Determine Bearing Strength. 0 75 Resistance factor F 65ksi Tensile strength of plate material t 0 1875 in Thickness of plate db 0.625in Anchor diameter d 0 6875 in Hole diameter L 1.0in 0.5 dh) Clear distance from edge of hole to edge of plate Bearing Strength. OR 214,- min[(1.5 L t F (3.0 -d t F epR 18 00 kip Maximum horizontal reacion. therefore okay Legend Building Series Cover All Building Systems ASCE 7 -05 26 Appendix A Drawings Diagrams Legend Building Series Cover All Building Systems ASCE7 -05 I INTERIOR ARCH ITEM# I QTY 1 30003000 1 2 30003355 I 2 1 30003350 1 2 END ARCH 1 ITEM# 1 QTY 1 30003005 1 2 1 30003360 1 1 30003365 1 1 30003350 I 2 APPROX WEIGHT OF INTERIOR TRUSS W/ BOLTS 247LB 1 REV. RELEASED MOW= IB" BAY IC1 CABLE 1 1231 -91 231 I err I DATE I 14' BAY REbl7 I.F167T 81200 -8 1 209 PURLIN LAYOUT PURLIN LAYOUT FOR FOR INTERIOR BAY BRACED BAYS 29' -3 7/8 INSIDE TO INSIDE OF BASE PLATES 29' -10 7/8 OUT TO OUT OF BASE PLATES 31 -1 13/16` OUT TO OUT OF STEEL 8 BAY 12' BAY 18611 -91 pg I 81171o0! NWI L 1 0 1 4 137 I DEALER: CUSTOMER: PROJECT PROJECT ID: C1 ORDER ID: 83706 6 BAY 1 6 8Ar 11161X1 I 1LN4114 1 1143 -01 143' 1 .811 -0 137 DM ORMIND E PRDPERIY a -ALL MU= b VPS PC. AIM REPRIMUCTI R M PM OR 01 MIRE =ROUT 11[ f7PRESSED =TIER =MOD Of CORM-M1 SURD= 814700 MC. 8I POURED. D V rawestrun BRACING LEGEND P PURLIN R RIDGE PURLIN X CROSS CABLE U/S BASE EL. 100' -0" 102 NOV Oil ®6M 0 M 6 8. e 1Y AICHLI K 57p I pl: 1 -106 -687 -2888 FAR: 1-300-687-2762 i lKu 513.5170 L44 BUILDING PROFILE re-1-n- REV. O I EFT ELEVATION DESCRIPTION Tn DATE 0 a- 10' -0' I TYP MK LENGTH. O,C. wIETEaES E&YELI IUMNG BOmImN! QE LOG OCEE7ING TUBE LOCATION espWECS m TftlsT/ wQ. e9BB91ANDL00utteso TES 1' 6 40' o PLAN T T T ALL PUREINS: 2 7/6 StnE Fl FVATION DEALER: CUSTOMER: PROJECT PROJECT ID: 4 ORDER ID: 83706 TIP U/S BASE E.FV: IOD' -0' TIP BASE WAIL Ott. 21' —D' 11? THIS DRANO1O IS PROPERTY OF COVER -AIL DUBBING MIENS INC. ANY REPRODUCMA 61 ■4OIE OR IN PART WTMOUT THE EXPRESSED WRITTEN OONSENT OF COVER -ALL BUILDING SYSTEMS INC. IS PROHIBITED. DRAWN 61: RIGHT Fl FVATION BUOLIDONG SY 7T1DVS Nn 6YY6BTf>M61 RD. 6MEA10OK 11.451451CHEMAN, 67P 1M i 1 -706- 667 -2666 Ms 1-006 -557 -2717 IlTrEW rroom Girl BRACING LAYOUT ANCHOR BOLT OS /8" S 3 1/2" 1 1 Ve 1- 1 3/4" —1 00Ml A BASE EL 100' -0" ANCHOR BOLT 115/8" DEW& Y ANCHOR BOLT 05/8" A REV. n n 1 r 31/Z" vs —I—Q-0 O/S 3/4" BASE EL 100' -0" I o 1 r O Tt1 Vx to E n 3 n DETNL "D" BASE EL. 100' -0" ISSUED FOR APPROVAL DO(7tlPIpN A 18'x14 —9" DOOR BY OTHERS FRAMED BY COVER —ALL 0 DV 102 NOV 07 IT I DATE 5' -9 7/16" D SPAN BASEPIATES ELEVATION DOOR/VENT SIZE LOG FASTENING TUBE LOCATION HSS MATCH PRICEUST/ WIZ. HORIZDNTAL LOCATIONS 18' 4' 29' 10 7/8" OUT TO OUT OF BASE PLATES DEALER: WESTERN REFINERY SERVICES INC CUSTOMER: EDEN EXCAVATING PORT ANGELES. WA PROJECT EQUIP MACH. STORAGE PROJECT ID: ORDER ID: 83706 N.T.S. I MARKN I COMPONENTS I WEIGHT I EC -1 IHSS4x4x11GA -92 1 48.59( HD -1 I HSS4x4x 11 GA -21411 I 113.011 FT 12" x 3" FASTENING TUBE (FIELD CUT) I D THIS DRAWING B PROPERTY OF COVER -ALL BUILDING SYSTEMS INC. ANY REPRODUCTION N WHOLE OR IN PART WITHOUT THE EXPRESSED WIBTTEI/ CONSENT OF COVET( -ALL BUILDING 5TSEE115 INC. 15 PROHIBITED. D VONKUSTERI 02 NOV 07 5' -9 7/16" B 6VER7 lf. NUOILOUNG sirs7iaas 3018 OBNIAN131111 ND. BABBA100N. SAIDMICHEMIN4. B7P 1M P11 1- 301- 857 -31BB TAx: 1 -306- 867 -3717 1lOGrEI ommerm.anr ENDWALL GRIDLINE 1 I FB02 A ANCHOR BOLT A5/8" 3 1/2' 1 1n L ono& Y s ®s ANCHOR BOLT 05/8' 0 D/S II 1 3/4' n DEP& 'A' BASE EL 100' -0' ANCHOR BOLT P5 /r Lr 1 3/4• r S BASE EL 100' -0' t I J 1 +J I DETAIL 0 BASE EL 100' -O A REV. ISSUED FOR APPROVAL DESCRIPTOR N N A o 11 4 DV BY c 4 4 4 A C 4 °p 0 0 0 .0 ID 02 NOV 071 aTE 4 4 4 5' -9 7/16" a 4 8 D SPAN BASEPLATES ELEVATION DOOR/VENT SIZE LOC. FASTENING TUBE LOCATION HSS MATCH PRICEUST/ WIZ. HORIZONTAL LOCATIONS PROJECT ID: 18'x14 -9 DOOR BY OTHERS FRAMED BY COVER -ALL 18' 4" 29' 10 7/8" OUT TO OUT OF BASE PLATES DEALER: WESTERN REFINERY SERVICES INC CUSTOMER: EDEN EXCAVATING PORT ANGELES. WA PROJECT EQUIP MACH. STORAGE ORDER ID: 83706 1 MARK# 1 COMPONENTS 1 WEIGHT IEC -1 IHSS4x4x11GA -92 48.591 1HD -1 1HSS4x4x11GA -214H 1 113.011 IFT 12" x 3" FASTENING TUBE (FIELD CUT) 1 I 4 4 D 4 4 4 a De DRAWING IS PROPERP/ OF COVER -ALL UULCINO SYSTEM INC. ANY REPRODUCTION N WHOLE OR 51 PART WITHOUT THE EXPRESSED WRITTEN CONSENT OF COVER -ALL BULDIND SYSTEMS INC. HI PROHIBITED. 010 11101 DAR! D VONKUSTER 02 NOV 07 111152151m rift Mat N.T.S. FT a 4 4 a 4 4 4 4 5' -9 7/16' B J S UBILDIlfPIJc3 SYMM MS 3818 08■606331N RD. ZABICATCGI. BASOATCNEWI B7P ,M I PH: 1 -106 -567 -26116 FAIL• 1 -306 -667 -2717 ENDWALL GRIDLINE 5 I FF803 I AA Loading Diagrams Load case 1 Dead Load (DL) (self weight) L NIIINN llll a h �p i pl1 l l II 11 1 1111111� a;�q�iir lh 01111:;; Load case 2 Collateral Load (CL) 0111111111 11110111 111111111111111111 Illlll 111111111111, 1 l il11� Load case 3 Live Load (LL) �a Apt Load 2 Load 3 i t IIN, iI!I�JIIII 111111 4111 II IN Load case 4 Snow Load (SL) Load aiuulu. Load 5 Load case 5 Unbalanced Snow Load (USL) Load 6 Load case 6 Perpendicular Wind Load (Pere WL) I- Load case 7 Parallel Wind Load (Par WL) Analysis Results Axial Forces I, I, Load Combination 1.2(DL +CL) +1 6LL Load 7 Load13 AxalFo Load 14 AxblFo Load Combination 1.2(DL +CL) +1 6SL Load Combination 1.2(DL +CL) +1 6USL L Load15 AzblFo Load Combination 0 9DL+ 1 6PERP WL Load16 AzblFo Load17 AziaIFo Load Combination 0 9DL+ 1 6PAR WL Appendix B STAAD Pro Results Legend Building Series Cover All Building Systems ASCE7 -05 II STAAD Pro Version 2007 Build 01 Proprietary Program of Research Engineers Intl Date= NOV 2 2007 Time= 11 54 43 USER ID Coverall Building Systems Inc PAGE NO 1 1 STAAD PLANE INPUT FILE LBS12 30 STD 2 START JOB INFORMATION 3 ENGINEER DATE 01- DEC -06 4 END JOB INFORMATION 5 INPUT WIDTH 79 6 UNIT INCHES KIP 7 JOINT COORDINATES 8 1 472 227 -1887 21 0 2 460 661 -1884 01 0 3 466 236 -1866 99 0 9 4 484 14 -1855 85 0 5 481 987 -1834 88 0 6 501 64 -1827 23 0 10 7 503 399 -1806 22 0 8 524 126 1802 33 0 9 529 737 -1782 01 0 11 10 537 002 -1791 56 0 11 550 823 -1'782 02 0 12 560 092 -1763 08 0 12 13 580 813 -1766 99 0 14 593 422 -1750 08 0 15 613 064 -1757 75 0 13 16 628 579 -1743 47 0 17 646 465 1754 63 0 18 646 465 -1742 63 0 14 19 664 352 -1743 47 0 0 679 867 1757 75 0 21 699 508 1750 08 0 15 22 712 117 -1766 99 0 23 732 838 -1763 08 0 24 742 107 -1782 02 0 16 25 763 194 -1782 01 0 26 755 928 -1791 56 0 27 768 804 -1802 33 0 17 28 789 531 -1806 22 0 29 791 29 -1827 23 0 30 810 943 -1834 88 0 18 31 808 79 -1855 85 0 32 826 694 -1866 99 0 33 820 706 -1887 21 0 19 34 832 269 -1884 01 0 20 MEMBER INCIDENCES 21 1001 2 3 1002 16 18 1003 18 19 1004 32 34 2001 3 5 2002 5 7 2003 7 9 22 2004 9 12 2005 12 14 2006 14 16 2007 19 21 2008 21 23 2009 23 25 23 2010 25 28 2011 28 30 2017 30 32 3001 1 4 3002 15 17 3003 17 20 24 3004 31 33 4001 4 6 4002 6 8 4003 8 10 4004 10 11 4005 11 13 4006 13 15 25 4007 20 22 4008 22 24 4009 24 26 4010 26 27 4011 27 29 4012 29 31 26 5001 1 3 5002 3 4 5003 4 5 5004 5 6 5005 6 7 5006 7 8 5007 8 9 27 5008 9 11 5009 11 12 5010 12 13 5011 13 14 5012 14 15 5013 15 16 28 5014 16 17 5015 17 19 5016 19 20 5017 20 21 5018 21 22 5019 22 23 29 5020 23 24 5021 24 25 502 25 27 5023 27 28 5024 28 29 5025 29 30 30 5026 30 31 5027 31 32 5028 32 33 6001 1 2 6002 17 18 6003 33 34 31 7001 9 10 7002 25 26 32 START USER TABLE 3 TABLE 1 34 UNIT INCHES KIP 35 PIPE 36 2 375IN14GA 37 2 375 2 209 0 0 38 1IN -14GA 39 1 0 834 0 0 40 TABLE 2 Friday November 02 2007 01 02 PM 0 \Sales Orders \83000 \83700183706 LBS30x40 010 WRS (EDEN EXCAVATING) \Analysis \FEA \LBS12 30 and Page 1 of 6 STAAD PLANE PAGE NO 2 41 UNIT INCHES KIP 42 TUBE 43 0 375IN -FB 44 0 749675 0 375 2 0 1874 0 00878906 0 249928 0 0216668 0 14055 0 499733 45 0 25IN -FB 46 0 496496 0 25 2 0 124 0 00260417 0 16577 0 00692141 0 062 0 330667 47 END 48 DEFINE MATERIAL START 49 ISOTROPIC STEEL 50 E 29000 51 POISSON 0 3 52 DENSITY 0 000283 53 ALPHA 6 5E -006 54 DAMP 0 03 55 END DEFINE MATERIAL 56 MEMBER PROPERTY AMERICAN 57 1001 TO 1004 2001 TO 2012 3001 TO 3004 4001 TO 4012 UPTABLE 1 2 375IN14GA 58 5001 TO 5028 UPTABLE 1 1IN -14GA 59 6001 TO 6003 UPTABLE 2 0 375IN -FB 60 7001 7002 UPTABLE 2 0 25IN -FB 61 CONSTANTS 62 MATERIAL STEEL ALL 63 MEMBER TRUSS 64 5001 TO 5028 6001 TO 6003 7001 7002 65 SUPPORTS 66 1 33 PINNED 67 UNIT FEET POUND 68 LOAD 1 LOADTYPE NONE TITLE DL 69 SELFWEIGHT Y -1 5 70 LOAD 2 LOADTYPE NONE TITLE CL 71 MEMBER LOAD 72 3001 TO 3004 4001 TO 4012 UNI PY 73 LOAD 3 LOADTYPE NONE TITLE LL 74 MEMBER LOAD 75 1002 1003 2002 TO 2011 UNI PY -120 0 76 LOAD 4 LOADTYPE NONE TITLE SL 77 MEMBER LOAD 78 1002 1003 UNI PY -250 2 79 2006 2007 UNI PY -250 2 80 2005 2008 UNI PY -218 4 81 2004 2009 UNI PY -172 9 82 2003 2010 UNI PY -127 4 83 2002 2011 UNI PY -77 3 84 LOAD 5 LOADTYPE NONE TITLE USL 85 MEMBER LOAD 86 1003 UNI PY -106 4 87 2007 UNI PY -185 5 88 2008 UNI PY -273 4 89 2009 UNI PY -326 6 90 2010 UNI PY -240 6 91 2011 UNI PY -146 1 92 LOAD 6 LOADTYPE NONE TITLE PERP WL 93 MEMBER LOAD 94 1004 2010 TO 2012 UNI Y -122 9 95 1002 1003 2004 TO 2009 UNI Y 104 8 96 1001 2001 TO 2003 UNI Y 74 8 Friday November 02 2007 01 02 PM 0 \Sales Orders \83000 \83700183706 LBS30x40 @10 WRS (EDEN EXCAVATING) \Analysis \FEA \LBS12 30 and Page 2 of 6 STAAD PLANE 7 LOAD 7 LOADTYPE NONE TITLE PAR WL 98 MEMBER LOAD 99 1004 2010 TO 2012 UNI Y 134 7 100 1002 1003 2004 TO 2009 UNI Y 74 8 101 1001 2001 TO 2003 UNI Y 44 9 102 LOAD COMB 8 (DL +CL) +LL 103 1 1 0 2 1 0 3 1 0 104 LOAD COMB 9 (DL +CL) +SL 105 1 1 0 2 1 0 4 1 0 106 LOAD COMB 10 (DL +CL) +USL 107 1 1 0 2 1 0 5 1 0 108 LOAD COMB 11 DL +PERP WL 109 1 1 0 6 1 0 110 LOAD COMB 12 DL +PAR WL 111 1 1 0 7 1 0 112 LOAD COMB 13 1 2(DL +CL) +1 6LL 11 1 1 2 2 1 2 3 1 6 114 LOAD COMB 14 1 2(DL +CL) +1 6SL 115 1 1 2 2 1 2 4 1 6 116 LOAD COMB 15 1 2(DL +CL) +1 6USL 117 1 1 2 2 1 2 5 1 6 118 LOAD COMB 16 0 9DL +1 6PERP WL 119 1 0 9 6 1 6 120 LOAD COMB 17 0 9DL +1 6PAR WL 121 1 0 9 7 1 6 122 PERFORM ANALYSIS P R O B L E M S T A T I S T I C S PAGE NO 3 NUMBER OF JOINTS /MEMBER+ELEMENTS /SUPPORTS 34/ 65/ 2 ORIGINAL /FINAL BAND WIDTH= 3/ 3/ 12 DOF TOTAL PRIMARY LOAD CASES '7 TOTAL DEGREES OF FREEDOM 98 SIZE OF STIFFNESS MATRIX 2 DOUBLE KILO —WORDS REQRD /AVAIL DISK SPACE 12 1/ 4101 2 MB 123 UNIT INCHES KIP 124 LOAD LIST 1 TO 17 125 PRINT SUPPORT REACTION ALL Friday November 02 2007 01 02 PM 0 \Sales Orders \83000183700183706 L& 30x40 @'10 WRS (EDEN EXCAVATING) \Analysis \FEA \LES12 30 ant Page 3 of 5 STAAD PLANE SUPPORT REACTIONS -UNIT RIP INCH STRUCTURE TYPE PLANE PAGE NO 4 JOINT LOAD FORCE -X FORCE -Y FORCE -Z MOM -X MOM -Y MOM Z 1 1 0 07 0 16 0 00 0 00 0 00 0 00 2 0 02 0 04 0 00 0 00 0 00 0 00 3 0 97 1 64 0 00 0 00 0 00 0 00 4 1 70 2 57 0 00 0 00 0 00 0 00 5 0 90 0 77 0 00 0 00 0 00 0 00 6 0 04 -1 11 0 00 0 00 0 00 0 00 7 -0 59 -1 14 0 00 0 00 0 00 0 00 8 1 07 1 84 0 00 0 00 0 00 0 00 9 1 80 2 77 0 00 0 00 0 00 0 00 10 1 00 0 97 0 00 0 00 0 00 0 00 11 0 12 -0 95 0 00 0 00 0 00 0 00 12 -0 52 -0 98 0 00 0 00 0 00 0 00 13 1 67 2 87 0 00 0 00 0 00 0 00 14 2 84 4 35 0 00 0 00 0 00 0 00 15 1 56 1 48 0 00 0 00 0 00 0 00 16 0 13 -1 64 0 00 0 00 0 00 0 00 17 -0 88 -1 68 0 00 0 00 0 00 0 00 33 1 -0 07 0 16 0 00 0 00 0 00 0 00 2 -0 02 0 04 0 00 0 00 0 00 0 00 3 -0 97 1 64 0 00 0 00 0 00 0 00 4 -1 70 2 5' 0 00 0 00 0 00 0 00 5 -0 90 2 30 0 00 0 00 0 00 0 00 1 64 -0 65 0 00 0 00 0 00 0 00 7 -0 17 -1 35 0 00 0 00 0 00 0 00 8 -1 07 1 84 0 00 0 00 0 00 0 00 9 -1 80 2 77 0 00 0 00 0 00 0 00 10 -1 00 2 50 0 00 0 00 0 00 0 00 11 1 57 -0 49 0 00 0 00 0 00 0 00 12 -0 24 -1 19 0 00 0 00 0 00 0 00 13 -1 67 2 87 0 00 0 00 0 00 0 00 14 -2 84 4 35 0 00 0 00 0 00 0 00 15 -1 56 3 92 0 00 0 00 0 00 0 00 16 55 -0 89 0 00 0 00 0 00 0 00 17 -0 34 -2 02 0 00 0 00 0 00 0 00 126 FINISH END OF LATEST ANALYSIS RESULT Friday November 02 2007 01 02 PM 0 \Sales Orders \83000 \83700 \83706 LBS30x40 @10 WRS (EDEN EXCAVATING) \Analysis \FEA \LBS12 30 and Page 4 of 6 STAAD PLANE For questions on STAAD Pro please contact Research Engineers Offices at the following locations USA CANADA CANADA UK FRANCE GERMANY NORWAY SINGAPORE +65 6225 -6158 INDIA +91(033)4006 -2021 JAPAN +81(03)5952 -6500 CHINA +86(411)363 -1983 THAILAND +66(0)2645- 1018/19 North America Europe Asia END OF IHE STAAD Pro RUN DATE= NOV 2 2007 Telephone +1 (714)974 -2500 +1 (905)632 -4771 +1 (604)629 6087 +44(1454)207 -000 +33(0)1 64551084 +49/931/40468 -71 +47 67 57 21 30 TIME= 11 54 44 support @reiusa com support @reel co uk support @reiasia net PAGE NO Email support @bentley com detech @odandetech com staad @dowco com support @reel co uk support @reel co uk info @reig de staad @edr no support @bentley com support @bentley com eng- eye @crc co jp support @bentley com support @bentley com 5 Friday November 02 2007 01 02 PM 0 \Sales Orders\83000\83700\83706 LBS30x40 @10 WRS (EDEN EXCAVATING)\Analysis \FEA\LBS12 30 ant Page 5 of 6 STAAD PLANE PAGE NO 6 Friday November 02 2007 01 02 PM 0 \Sales Orders183000 \83700 \83706 LBS30x40 @10 WRS (EDEN EXCAVATING)lAnalysis\FEA \LBS12 30 and Page 6 of 6 Start Column (number) 1 Start Row 1 13 Primary Element Strength Ratios Path: O_\Sales Orders183000183700183706 LBS30z40 @10.WRS.(EDEN EXCAVATING)1Analysis\FEA11BS12 30'std Lower Load Case 13 Upper Load Case 17 Member Into 1 1 Capacities I Actuals I Strength Ratio Beam Number 1 Group Number) P Modifier) P 1 T I M I Load Case' P I T 1 M I 3001 3002 3003 3004 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 1.00 3 1.00 3 1.00 3 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 Overwrite Existing Beam Group Numbers? (Y /N) Y 1 of 6 Total Members Checked 13 3.94 0.00 0.57 1 9 13 0.00 1.35 0.33 1 4% 13 0.00 1.35 0.33 1 4% 13 3.94 0.00 0.57 1 9% 13 4.58 0.00 0.57 1' 10% 13 3.88 0.00 0.46 8% 13 2.61 0.00 0.30 5% 13 2.60 0.00 0.30 5% 13 0.83 0.00 0.10 2% 13 0.00 0.58 0.29 2% 13 0.00 0.58 0.29 2% 13 0.83 0.00 0.10 2% 13 2.60 0.00 0.30 5% 13 2.61 0.00 0.30 5% 13 3.88 0.00 0.46 8% 13 4.58 0.00 0.57 10% 13 0.00 0.84 0.00 5% 13 1.10 0.00 0.00 6% 13 0.34 0.00 0.00 2% 13 0.33 0.00 0.00 2% 13 113 0.00 0.00 6% 13 0.00 0.28 0.00 2% 13 1.19 0.00 0.00 7% 13 0.00 0.86 0.00 5% 13 1.23 0.00 0.00 7% 13 0.00 0.82 0.00 5% 13 0.82 0.00 0.00 5% 13 0.00 0.63 0.00 4% 13 0.27 0.00 0.00 2% 13 0.00 0.10 0.00 1% 13 0.00 0.10 0.00 1% 13 0.27 0.00 0.00 2% 13 0.00 0.63 0.00 4% 13 0.82 0.00 0.00 5% 13 0.00 0.82 0.00 5% 13 1.23 0.00 0.00 7% 13 0.00 0.86 0.00 1 5% 13 1 19 0.00 0.00 1 7% 13 0.00 0.28 0.00 1 2% 13 1 13 0.00 0.00 1 6% 13 0.33 0.00 0.00 1 2% Primary Element Strength Ratios Path: O' 1Safes.Orders\83000\83700183706 LBS30x40@10 WRS (EDEN EXCAVATING)1Analysis\FEA\LBS12 30'.std Lower Load Case 13 Upper Load Case 1'7' Start Column (number) 1 1 Start Row I 13 Member Info 1 I Beam Number I Group Number) P Modifier( 3001 3002 3003 3004 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 1.00 3 1.00 3 1.00 3 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 IZ Overwrite Existing Beam Group Numbers? (Y /N) Y Caoacities P I T I 2 of6 Total Members Checked Actuals I Strength Ratio M (Load Case P 1 T 1 M 1 5026 1 5 I 1.00 13 1 0.34 1 0.00 I 0.00 I 2% 5027 1 5 I 1.00 13 1 1 10 1 0.00 I 0.00 1 6% 5028 1 5 1.00 r <r::. 13 I 0.00 1 0.84 I 0.00 I 5% 14 6.44 0.00 0.97 24% 14 0.00 3.39 0.71 10% 14 0.00 3.39 0.71 10% 14 6.44 0.00 0.96 24% 14 8.19 0.00 0.97 30% 14 7.54 0.00 0.91 27% 14 5.35 0.00 0.66 11% 14 5.34 0.00 0.66 11% 14 1.66 0.00 0.20 3% 14 0.00 1.56 0.68 5% 14 0.00 1:56 0.68 5 14 1.66 0.00 0.20 3% 14 5.34 0.00 0.66 11% 14 5.35 0.00 0.66 11% 14 7.54 0.00 0.91 27% 14 8.19 0.00 0.96 30% 14 0.00 1 73 0.00 21% 14 2.28 0.00 0.00 26% 14 0.21 0.00 0.00 1% 14 0.99 0.00 0.00 6% 14 1.73 0.00 0.00 10 14 0.00 0.37 0.00 2% 14 2.17 0.00 0.00 25% 14 0.00 1 78 0.00 21% 14 2.55 0.00 0.00 29% 14 0.00 1.89 0.00 23% 14 1.87 0.00 0.00 21% 14 0.00 1.51 0.00 9% 14 0.64 0.00 0.00 4% 14 0.00 0.28 0.00 2% 14 0.00 0.28 0.00 2% 14 0.64 0.00 0.00 4% 14 0.00 1.51 0.00 9% 14 1.87 0.00 0.00 21% 14 0.00 1.89 0.00 23% 14 2.55 0.00 0.00 29% 14 0.00 1 78 0.00 21% 14 2.17 0.00 0.00 25% Primary Element Strength Ratios Path ::C::Sales Orders \830001837Q083706 LSS30z40@10 WFiS (EDEN EXCAVATING )\Analysis \FEA\LBS1230'.std: Lower Load Case?" '13? Overwrite Existing Beam Group Numbers? (Y /N) Y' Upper Load Case i. Start Column (number) I 1 Start Row 1 13' Member Info Beam Number Group Number 5023 5 5024 5 5025 5 5026 5 5027 5 5028 5 3001 3002 3003 3004 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 P Modifier! 1.00 1.00 1.00 1.00 1.00 1.00 Capacities P I T 1 I 1.00 1S 3 1.00✓ x r_ t 15 3 1.00 s �s 15 3 1.00dS� r, 15 4 1.00 te 't 15 4 1.00' j x 15 4 1.00 t w 15 4 1.00 �5r 15 4 1.003 c 15 4 1.00 15 4 1.00 15 4 1.00h r,.. e 15 4 1.00 15 r 4 1.00 �k�`' vc, .�s' 15 4 1.00' n 15 4 1.00`�e sr t K 15 5 1.00 15 5 1.00 3 a r 15 5 1.00 5 'r' 15 5 1.00 1 �n a 15 5 1.00 15 5 1.00' e Y a 15 5 1.00 ,rw �t 15 5 1.00 k 15 5 1.00 15 5 I 1.00 15 5 1.00 15 5 1.00k rah 15 5 1.00 15 5 1.00 15 5 1.00 15 5 1.00 15 5 1.00 15 5 1.00 r� 15 5 1.00 15 3 of 6 Total Members Checked 1 Actuals M 'Load Case P T M 1 14 0.00 0.37 0.00 14 1 73 0.00 0.00 14 0.99 0.00 0.00 14 0.21 0.00 0.00 14 2.28 0.00 0.00 14 0.00 1 73 0.00 Strength Ratio o� 2% 10% 6% 1% 26% 21% 3.11 0.00 0.56 7 1.03 0.00 0.29 3% 0.00 2.32 0.68 8% 4.26 0.00 0.51 9% 5.19 0.00 0.70 11% 6.29 0.00 0.86 23% 6.79 0.00 0.86 25% 6.79 0.00 0.81 25% 5.50 0.00 0.81 12% 3.69 0.00 0.59 8% 0.00 4.58 0.84 11% 0.00 4 72 0.93 11% 0.00 2.76 0.90 8% 0.00 2.75 0.46 6% 0.70 0.00 0.46 3% 3.35 0.00 0.51 7% 0.00 1 49 0.00 9% 1.94 0.00 0.00 22% 0.00 0.52 0.00 3% 1.65 0.00 0.00 9% 0.34 0.00 0.00 2% 114 0.00 0.00 7% 0.51 0.00 0.00 3% 0.00 0.01 0.00 0% 1.52 0.00 0.00 9% 0.00 0.27 0.00 2% 1.84 0.00 0.00 21% 0.00 1 17 0.00 7% 1.95 0.00 0.00 22% 0.00 1.92 0.00 23% 2.01 0.00 0.00 23% 0.00 1.94 0.00 23% 0.72 0.00 0.00 4% 0.00 0.92 0.00 5% 0.00 0.74 0.00 4% Lower Load Case 13 Upper Load Case 11 Start Column (number) I 1 Start Row I 13 Primary Element Strength Ratios Path: O: ■SalesOrders183000\83700183706 LBS30x40 @10 WRS (EDEN E(CAVATING)1Analysis \EEAJLBS12 30'.std Member Info Beam Number 1 Group Number 5020 A 5 5021 5022 5023 5024 5025 5026 5027 5028 3001 3002 3003 3004 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5 5 5 5 5 5 5 5 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5, 5 5 5 5 P Modifier! 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Overwrite Existing Beam Group Numbers? (YIN) Y Capacities P I 7 I 4 of 6 Total Members Checked I Actuals M I Load Case P T M -1 15 0.63 0.00 0.00 15 0.00 1.65 0.00 15 1.98 0.00 0.00 15 0.00 2.06 0.00 15 1.88 0.00 0.00 15 0.00 1.21 0.00 15 1 16 0.00 0.00 15 0.11 0.00 0.00 15 0.00 0.05 0.00 Strength Ratio 4% 10% 23% 25% 22% 7% 7% 1% 0% 16 0.00 0.63 0.11 2% 16 2.11 0.00 0.53 6% 16 0.63 0.00 0.26 2% 16 0.00 4.29 0.93 13% 16 0.76 0.00 0.26 2% 16 1.88 0.00 0.55 5% 16 2.98 0.00 0.55 7% 16 2.98 0.00 0.66 8% 16 3.23 0.00 0.66 8% 16 3.00 0.00 0.53 7% 16 0.00 1.39 0.14 3% 16 0.00 3.89 0.65 9% 16 0.00 7 42 0.72 25% 16 0.00 7 42 1.16 27% 16 0.00 8.88 118 32% 16 0.00 7.91 116 29% 16 0.00 1.09 0.00 7% 16 0.82 0.00 0.00 5% 16 0.00 0.81 0.00 5% 16 0.89 0.00 0.00 5% 16 0.00 0.43 0.00 3% 16 0.92 0.00 0.00 5% 16 0.00 0.40 0.00 2% 16 0.52 0.00 0.00 3% 16 0.24 0.00 0.00 1% 16 0.41 0.00 0.00 2% 16 0.67 0.00 0.00 4% 16 0.00 0.09 0.00 1 16 0.95 0.00 0.00 5% 16 0.00 0.80 0.00 5% 16 0.94 0.00 0.00 5% 16 0.00 1.27 0.00 8% Lower Load Case 13 Upper Load Case 17 Start Column (number) 1 1 :1 Start Row I 13 Primary Element Strength Ratios Path: fl_ 1Sales,Orders\83000\8370(\83706 LBS30x40 @10'WRS (EflEN EXCAVATING }1AnalosTEA1 asig s0'. Member Info Beam Number I Group Number 5017 1 5 5018 I 5 5019 1 5 5020 5 5021 5. 5022 5 5023 5 5024 5 5025 5 5026 5 5027 5 5028 5 rio 3001 3002 3003 3004 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 1.00 3 1.00 3 1.00 3 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 4 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1 1.00 5 1.00 5 1.00 5 1.00 Overwrite Existing Beam Group Numbers? (Y /N) Y` Capacities P Modifier I PI TI M I Load Case' 5 ot 6 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 Total Members Checked Actuals 1 Strength Ratio P I T M 1.00 It F n' 16 1 1.11 1 0.00 0.00 6% 1.00 1f 16 0.00 I 1.94 0.00 23% 1.00 16 0.99 0.00 0.00 6% 1.00 16 0.00 2.75 0.00 33% 1.00 16 1 43 0.00 0.00 8% 1.00 t 16 0.00 1.93 0.00 23% 1.00 yfk ;s 16 0.00 0.24 0.00 1% 1.00 4 4 r 9S i 16 0.00 0.90 0.00 5% 1.00 4. .:e r: v 16 0.00 2.04 0.00 24% 1.00 :te`ff.ot, 16 1.07 0.00 0.00 6% 1.00 16 0.00 3.17 0.00 38% 1.00 a 3 t c ii" 16 3.20 0.00 0.00 37% 0.00 2.20 0.26 6% 0.00 1.31 0.08 3% 0.00 0.64 0.11 2% 0.00 0.54 0.21 2% 0.00 2.89 0.29 6% 0.00 3.18 0.31 6% 0.00 3.15 0.31 6% 0.00 3.15 0.30 6 0.00 2.47 0.22 5% 0.00 1.91 0.15 4% 0.08 0.00 0.16 1% 0.76 0.00 0.38 3% 1.58 0.00 0.38 4% 1.58 0.00 0.48 5% 1 71 0.00 0.48 5% 1.05 0.00 0.36 3% 0.39 0.00 0.00 2% 0.00 .0.85 0.00 5% 0.00 0.04 0.00 0% 0.00 0.70 0.00 4% 0.00 0.37 0.00 2% 0.00 0.41 0.00 2% 0.00 0.44 0.00 3% 0.04 0.00 0.00 0% 0.00 0.77 0.00 5% 0.00 0.06 0.00 0% 0.00 0.72 0.00 4% 0.06 0.00 0.00 0% 0.00 0.64 0.00 4% Primary Element Strength Ratios Path: O_LSales Orders \83000\83700183706`LBS30x40610 WRS -(EDEN EXCAVATING )1Analysis\FEA1LBS1230',std Lower Load Case 13" Overwrite Existing Beam Group Numbers? (Y /N) Y Upper Load Case 17 Start Column (number) 1 1 Start Row 13 Member Info I Capacities I Actuals Beam Number Group Number P Modifier/ P I T 1 M I Load Case P T M 5014 5 1.00 1 17 0.21 0.00 0.00 5015 5 1.00 9 17 0.00 0.57 0.00 5016 5 1.00Nr'�, 17 0.37 0.00 0.00 5017 5 1.00 �w''' a 17 0.00 0.48 0.00 5018 5 1.00 17 0.47 0.00 0.00 5019 5 1.00 ,a 17 0.00 0.33 0.00 5020 5 1.00 17 0.59 0.00 0.00 5021 5 1.00 iarw v 17 0.00 0.37 0.00 5022 5 1.00 s.� 17 0.26 0.00 0.00 5023 5 1.00 r sxr 17 0.12 0.00 0.00 5024 5 1.00 17 0.00 0.16 0.00 5025 5 1.00r 17 0.63 0.00 0.00 5026 5 1.00 17 0.00 0.89 0.00 5027 5 1.00 17 0.97 0.00 0.00 5028 5 1.00 �1r'1lk� 17 0.00 1.56 0.00 6 of 6 Total Members Checked Strength Ratio 1% 3% 2% 3% 3% 2% 3% 2% 1% 1% 1% 4% 5% 6% 9%